Computer Science & Communications

computing

TagDock:an efficient rigid body molecular docking algorithm for three dimensional models of oligomeric biomolecular complexes with limited experimental restraint data

TagDock is an efficient rigid body molecular docking algorithm that generates three-dimensional models of oligomeric biomolecular complexes in instances where there is limited experimental restraint data to guide the docking calculations. Through distance difference analysis TagDock additionally recommends followup experiments to further discriminate divergent (score-degenerate) clusters of TagDock's initial solution models

What is TagDock?
TagDock is an efficient rigid body molecular docking algorithm that generates three-dimensional models of oligomeric biomolecular complexes in instances where there is limited experimental restraint data to guide the docking calculations.

Licensing manager: 
Masood Machingal
Read more

Algorithms for Compliant Insertion and Motion Control of Continuum Robots

This technology enables continuum robots (aka snake robots) to precisely navigate the intricate structures of deep anatomical passages during minimally invasive or natural orifice surgery. Collateral surgical damage is minimized by the force sensing capabilities of the algorithms used.

Summary

This technology enables continuum robots (aka snake robots) to precisely navigate the intricate structures of deep anatomical passages during minimally invasive or natural orifice surgery.

Licensing manager: 
Ashok Choudhury
Read more

Algorithms for Contact Detection and Contact Localization in Continuum Robots

This technology enhances the capabilities of continuum robots by not only detecting contact during movement but also estimating the position of the contact during the movements executed by the robot. An algorithmic feedback loop can then constrain the movement of the robot to avoid damage to its robot arm, damage to another robot arm or damage to surrounding structure. Applications for this technology include enhanced safe telemanipulation for multi-arm continuum robots in surgery, micro-assembly in confined spaces, and exploration in unknown environments.

Summary

This technology enhances the capabilities of continuum robots by not only detecting contact during movement but also estimating the position of the contact during the movements executed by the robot.

Licensing manager: 
Ashok Choudhury
Read more

Research Electronic Data Capture (REDCap) Toolset

REDCap (Research Electronic Data Capture) is a secure web application for building and managing online surveys and databases. Despite its broad potential application, the primary function is for Electronic Data Capture, specifi cally for Clinical Trial Management solutions. REDCap is a globally implemented platform at more than 906 institutional partners from CTSA, GCRC, RCMI and other institutions in 73 countries. The REDCap application allows users to build and manage online surveys and databases quickly and securely, and is currently in production use or development build-status for more than 92,000 projects with over 119,000 users spanning numerous research focus areas across the consortium.

Summary

REDCap (Research Electronic Data Capture) is a secure web application for building and managing online surveys and databases.

Licensing manager: 
Peter Rousos
Read more

Gene Expression Model Selector (GEMS)

Gene Expression Model Selector (GEMS) is a system that constructs, in a supervised fashion, diagnostic and outcome prediction models from array gene expression data. Examples of such models are: (a) models that detect cancer, (b) models that determine the correct subtype of cancer or (c) models that predict survival after treatment. Models that support such complex decision making are widely recognized as having the potential to revolutionize medicine in the years to come. In addition to the decision support models, GEMS can be used to select a small number of genes that are as good or better than the full gene set for diagnosis and/or outcome prediction. These biomarkers (genes) are also useful for discovery purposes (e.g., they suggest plausible causes and treatments of various types of cancer). Finally, GEMS provides estimates of the models' performance (e.g., accuracy) in future applications (i.e., when applied on patients not used to build the models but who come from the same patient population as the ones used to build the models), and allows users to run the models for individual patients.

Description

Gene Expression Model Selector (GEMS) is a system that constructs, in a supervised fashion, diagnostic and outcome prediction models from array gene expression data.

Licensing manager: 
Hassan Naqvi
Read more

System for Standardizing Ultrasonography Training Using Tomographic Volumes

Currently practical (as opposed to didactic) training is performed by trainees practicing on live patients and then learning disease processes from mentors. The training is serendipitous by necessity. This technology would potentially shorten, standardize, and broaden the training for technicians as well as radiologists and surgeons.
Currently practical (as opposed to didactic) training is performed by trainees practicing on live patients and then learning disease processes from mentors. The training is serendipitous by necessity.
Licensing manager: 
Taylor Jordan
Read more

KnowledgeMap: Comprehensive Curriculum Content Management and Mapping System for Medical Education

KnowledgeMap is a web accessible comprehensive content management system with robust mapping capabilities across the entire curriculum (at the level of full lectures, not just outlines or syllabi) that facilitates overall design, management, and evaluation of a coherent and coordinated curriculum.

Summary

KnowledgeMap is a web accessible comprehensive content management system with robust mapping capabilities across the entire curriculum (at the level of full lectures, not just outlines or syllabi) that facilitates overall design, management, and evaluation of a coherent and coordinated curriculum.

Addressed Need

Licensing manager: 
Taylor Jordan
Read more

System for Stabilizing Phase of a Picosecond Laser Sysem to an RF Accelerator

The invention relates to an improved method and system for synchronizing signals in a particle accelerator system. In one embodiment, a method and system is disclosed whereby a phase of laser pulses are monitored, and a high-frequency signal is adjusted as necessary to be substantially in-phase with the laser pulses. In another embodiment, a method and system is disclosed whereby a phase of an electromagnetic field in an electron gun is monitored, and a high-frequency signal is adjusted as necessary to be substantially in-phase with the electromagnetic field.

Summary

The invention relates to an improved method and system for synchronizing signals in a particle accelerator system. In one embodiment, a method and system is disclosed whereby a phase of laser pulses are monitored, and a high-frequency signal is adjusted as necessary to be substantially in-phase with the laser pulses.

Licensing manager: 
Ashok Choudhury
Read more

Ultrasonic Sensor for Non-intrusive Local Temperature, Transient Temperature and Heat Flux Measurements

An apparatus for measuring the temperature and heat flux of materials through the use of an ultrasonic sensor has been developed at Vanderbilt University. The sensor uses acoustic measurement techniques to determine the heat flux and temperature of material surfaces otherwise inaccessible in particular during system operation in order to enhance monitoring capabilities and reduce unsafe or impaired function due to extreme temperatures.

Summary

An apparatus for measuring the temperature and heat flux of materials through the use of an ultrasonic sensor has been developed at Vanderbilt University.

Licensing manager: 
Ashok Choudhury
Read more

Motion Generator to Transform Linear into Nutation Motion

This novel device converts linear motion into nutating motion and can create large angles from small linear displacements. The invention uniquely provides control and precision in the use of nutation motion making it particularly adaptable to micro-applications.

Summary

This novel device converts linear motion into nutating motion and can create large angles from small linear displacements.

Licensing manager: 
Ashok Choudhury
Read more

Featured Video

Vanderbilt Patent Activity

View Vanderbilt University Patents

CTTC on Twitter