System and Method for Measuring of Lung Vascular Injury by Ultrasonic Velocity and Blood Impedance

The present invention is a method for assessing capillary permeability to determine vascular lung injury without requiring the injection of radioactive material or requiring the sampling of blood. The method includes measuring impedance and ultrasonic velocity of blood flow through a lung. A hypertonic bolus is injected into the blood flow, and measurements of the blood flow are taken to determine the ultrasonic velocity and the electrical impedance of the blood. These measurements are used to calculate the capillary transport quantity, which is the product of the reflection coefficient for movement of fluid across the capillary barrier and the filtration coefficient. The measured value of the capillary transport quantity can then be compared to a conventional capillary transport quantity for healthy lungs, and one can determine injury by a significant decrease in the measured capillary transport quantity as compared to the standard measurements. Furthermore, a comparison of the osmotic transient graphs of the plotted indicator curves can serve to acknowledge lung vascular injury. Lung injury can be determined from the measured data when the point of osmotic equilibrium (where the indicator curve crosses the baseline) is significantly delayed as compared to the point of osmotic equilibrium plotted for a healthy lung.

Website
U.S. Patent 5,935,066: System and method for measuring of lung vascular injury by ultrasonic velocity and blood impedance

Inventors: 
Thomas HarrisKevin SealeN KrivitskiSorel Bosan
Licensing manager: 
Peter Rousos

Featured Video

Vanderbilt Patent Activity

View Vanderbilt University Patents

CTTC on Twitter