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Abstract

We analyze a three-player legislative bargaining game over an ideological and a distributive

decision. Legislators are privately informed about their their ideological intensities, i.e. the

weight they place on the ideological decision relative to the weight they place on the distribu-

tive decision. Communication takes place before a proposal is offered and majority rule voting

determines the outcome. We show that it is not possible for all legislators to communicate

informatively. In particular, the legislator who is ideologically more distant from the proposer

may not communicate informatively, but the closer legislator can communicate whether he

would “compromise” or “fight” on ideology. Surprisingly, the proposer may be worse off when

bargaining with two legislators (under majority rule) than with one (who has veto power),

because competition between the legislators may result in less information conveyed in equilib-

rium. Despite separable preferences, the proposer is always better off making proposals for the

two dimensions together.

JEL classification: C78, D72, D82, D83



1 Introduction

Legislative policy-making typically involves speeches and demands by legislators that may shape

the proposals made by the leadership. For example, in the 2010 health care overhaul in the

U.S., one version of the Senate bill included $100 million in Medicaid funding for Nebraska

as well as restrictions on abortion coverage in exchange for the vote of Nebraska Senator Ben

Nelson. As another example, consider the threat in 2009 by seven members of the U.S. Senate

Budget Committee to withhold their support for critical legislation to raise the debt ceiling

unless a commission to recommend cuts to Medicare and Social Security is approved.1 Would

these senators indeed have let the United States default on its debt, or was their demand just

a bluff? More generally, what are the patterns of demands in legislative policy-making? How

much information do they convey? Do they influence the nature of the proposed bills? Who

gets private benefits and what kind of policies are chosen under the ultimately accepted bills?

To answer these questions, it is necessary to have a legislative bargaining model in which

legislators make demands before the proposal of the bills. One approach is to assume that the

demands serve as a commitment device, that is, the legislators refuse any offer that does not

meet their demands.2 While this approach offers interesting insights into some of the questions

above, it relies on the strong assumption that legislators commit to their demands.3 In this

paper, we offer a different approach that allows legislators to make speeches but to which

they are not committed when casting their votes. The premise of our approach is that only

individual legislators know which bills they prefer to the status quo. So even if the legislators do

not necessarily carry out their threats, their demands may be meaningful rhetoric in conveying

private information and dispelling some uncertainty in the bargaining process.

We model rhetoric as cheap-talk messages as in Matthews (1989). In our model (1) three

legislators bargain over an ideological and a distributive decision; (2) one of the legislators,

called the chair, is in charge of formulating the proposal; (3) each legislator other than the

chair is privately informed about his own preferences; (4) communication takes place before a

proposal is offered; (5) majority rule voting determines whether the proposal is implemented.

1http://thehill.com/homenews/senate/67293-sens-squeeze-speaker-over-commission
2This is the approach taken by Morelli (1999) in a complete information framework. He does not explicitly

model the proposal-making and the voting stages. As such, the commitment assumption is implicit.
3Politicians often make empty threats. See, for example, http://thehill.com/homenews/news/14312-gopsays-

it-can-call-reids-bluffs.
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Each legislator’s position on a unidimensional ideological spectrum is publicly known, but

his ideological intensity, i.e. the weight he places on the ideological dimension relative to the

distributive dimension is his private information. As such, the chair is unsure how much private

benefit she has to offer to a legislator to gain his support for a policy decision, but she can use

the messages sent in the communication stage to make inferences about his ideological intensity

(i.e. his type). We focus on a class of equilibrium called simple monotone equilibrium in

which types who send the same message form an interval, and the proposal does not depend

on the message of a legislator if he receives no private benefit. We show that in any simple

monotone equilibrium: (1) At most one legislator’s messages convey some information about

his preferences (Proposition 4, (i)). (2) In particular, if the legislator whose position is closer to

the chair’s wants to move the policy in the same direction as the chair does, then it is impossible

for the other legislator (i.e. the legislator whose position is further away from the chair’s) to be

informative (Proposition 4, (ii)). (3) Although the closer legislator may be informative, even

he can convey only limited information (Proposition 5).

To establish these results, we first show if the type distributions have increasing hazard

rates, then in a simple monotone equilibrium, the chair offers positive private benefit to at

most one legislator. Suppose one legislator is offered positive private benefit while the other

is offered none. Then the legislator who is excluded (i.e., who gets no private benefit) strictly

prefers the status quo and will vote against the proposal whereas the legislator who is included

(i.e., who gets positive private benefit) becomes pivotal and can guarantee a payoff at least as

high as his status quo payoff. Alternatively, suppose no legislator is offered any private benefit.

Then the chair’s optimal proposal must make the closer legislator just willing to accept. Note

that if the closer legislator wants to move policy in the same direction as the chair does, then the

chair’s optimal proposal must move the policy away from the status quo towards her own ideal.

Hence, although the closer legislator is indifferent between this proposal and the status quo, the

more distant legislator is made worse off than the status quo. It follows that the more distant

legislator would like to maximize his chance to be included in a proposal, thereby undermining

the credibility of his rhetoric. As to the closer legislator, it is possible for him to have (at most)

two equilibrium messages signaling his ideological intensity. Specifically, he sends the “fight”

message when he places a relatively high weight on the ideological dimension and the chair

responds with a proposal that involves minimum policy change and gives neither legislator any

private benefit since the message indicates that there is no room for making a deal. When he
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places a relatively low weight on the ideological dimension, he sends the “compromise” message

and the chair responds by offering some private benefit in exchange for moving the policy closer

to her own ideal. The threshold type of the closer legislator is indifferent between sending the

“fight” and the “compromise” messages because either way he gets a payoff equal to his status

quo payoff, and a single-crossing property guarantees that other types’ incentive constraints are

satisfied as well. It is impossible for even the closer legislator to convey more precise information

about his ideological intensity. In particular, once the chair believes that the closer legislator

places a relatively low weight on ideology and responds by including him in a proposal, the

legislator now has an incentive to exaggerate his ideological intensity and demand a better deal

from the chair, but this undermines the credibility of his demands. Somewhat ironically, the

proposal induced by the “fight” message always passes in equilibrium, but the proposal induced

by the “compromise” message may fail to pass in equilibrium.

Surprisingly, bargaining with two legislators rather than one (who can veto a bill) might hurt

the chair even though with majority rule, the chair’s bargaining position is improved. Under

complete information, this improvement in the bargaining position immediately implies that

the chair is better off when bargaining with two legislators. Under asymmetric information,

however, the number of legislators also affects the amount of information transmission. In

particular, increased competition may undermine the legislators’ incentives to send the “fight”

message, resulting in less information transmitted in equilibrium and this hurts the chair.

Since the players bargain over both an ideological dimension and a distributive dimension,

a natural question is whether it is better to bundle the two issues in one bill or negotiate over

them separately. In our model bundling always benefits the chair because she can exploit the

differences in the other legislators’ trade-offs between the two dimensions, and use private benefit

as an instrument to make deals on policy changes that she wants to implement. This result,

however, depends on the nature of uncertainty regarding preferences. In a related working

paper (Chen and Eraslan, 2011), we show that bundling may result in informational loss when

ideological positions are private information; in that case, bundling might hurt the chair.

Before turning to the description of our model, we briefly discuss the related literature.

Starting with the seminal work of Baron and Ferejohn (1989), legislative bargaining models

have become a staple of political economy and have been used in numerous applications. Like

our paper, some papers in the literature include an ideological dimension and a distributive

dimension (see, for example, Austen-Smith and Banks (1988), Banks and Duggan (2000), Jack-
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son and Moselle (2002), and Diermeier and Merlo (2004)), but all these papers take the form

of sequential offers and do not incorporate demands. A smaller strand of literature, notably

Morelli (1999), instead models the legislative process as a sequential demand game where the

legislators commit to their demands.4 With the exceptions of Tsai (2009), and Tsai and Yang

(2010 a, b), who do not model demands, all of these papers assume complete information.

The literature on cheap talk has largely progressed in parallel to the bargaining literature.

Exceptions are Farrell and Gibbons (1989), Matthews (1989), and Matthews and Postlewaite

(1989). Of these Matthews (1989) is the most closely related. Our model differs from his by

having multiple senders and a distributive dimension in addition to an ideological dimension.

Furthermore, in our model, legislators are privately informed about their ideological intensities,

whereas in Matthews (1989), the private information is about the ideological position of the

sender. Our paper is also related to cheap talk games with multiple senders (see, for example,

Gilligan and Krehbiel (1989), Austen-Smith (1993), Krishna and Morgan (2001a, b) Battaglini

(2002) and Ambrus and Takahashi (2008)). Our framework differs from these papers because it

has voting over the proposal made by the receiver and also incorporates a distributive dimension.

In the next section we describe our model. We first consider the complete information model

as a benchmark in Section 3. We then study the bargaining game in which the legislators’

ideological intensities are uncertain. In Sections 4, we analyze the simpler game with only one

legislator (other than the chair) and then move on to analyze the game with two legislators in

Section 5. We discuss extensions and generalizations in Section 6.

2 Model

Three legislators play a three-stage game to collectively decide on an outcome that consists

of an ideological component and a distributive component, for example, setting the level of

environmental regulation and dividing government spending across districts. Legislator 0 is

the proposer (the chair of the legislature) in charge of formulating a proposal.5 From now

on we simply refer to legislator 0 as the chair, and use the term legislator to refer to the

other two players.6 Denote an outcome by z = (y;x) where y is an ideological decision and

4See also Vidal-Puga (2004), Montero and Vidal-Puga (2007), and Breitmoser (2009).
5We use “her” as the pronoun for the chair and “him” as the pronoun for legislators 1 and 2.
6When we use i and j to index the legislators, we omit the quantifiers = 1, 2 or j = 1, 2. When we refer

to both legislator i and legislator j, we implicitly assume j 6= i. For legislator i = 1, 2,, we let −i denote the
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x = (x0, x1, x2) is a distributive decision. The set of feasible ideological decisions is Y = R, and

the set of feasible distributions is X = {x ∈ R3 :
∑2

i=0 xi ≤ c, x1 ≥ 0, x2 ≥ 0} where xi denotes

the private benefit of legislator i and c ≥ 0 is the size of the surplus (or, as it is referred to in

the literature, “cake”) available for division. We say that proposal (y;x) includes legislator i

if xi > 0 and excludes legislator i if xi = 0. The status quo allocation is denoted by s = (ỹ; x̃)

where ỹ ∈ Y and x̃ = (0, 0, 0).7

The payoff of each player i = 0, 1, 2 depends on the ideological decision and his/her pri-

vate benefit. We assume that the players’ preferences are separable over the two dimensions.

Specifically, player i has a quasi-linear von Neumann-Morgenstern utility function given by

ui (z, θi, ŷi) = xi + θiv (y, ŷi) ,

where z = (y;x) specifies the outcome, ŷi denotes the ideal policy of player i and θi ∈ [0,∞)

is the weight that player i places on his/her payoff from the ideological decision relative to

the distributive decision. The marginal rate of substitution, (∂ui/∂y)/(∂ui/∂xi) = θi(∂v/∂y),

measures player i’s preference for ideology relative to private benefit and it depends on both θi

and ŷi. With fixed ŷi, the (absolute value of the) marginal rate of substitution is increasing in

θi. For expositional convenience, we call θi the parameter of ideological intensity.

Legislator i = 1, 2 privately observes the realization of θi, called his type, a random variable

with probability distribution Pi. The set of possible types of legislator i is Θi = [θi, θi] ⊂ R+,

called his type space. Let Fi denote the distribution function of θi, i.e., Fi (t) = Pi (θi ≤ t). We

assume that Fi is continuous and has full support on Θi. The legislators’ types are independently

distributed. Although θi is legislator i’s private information, its distribution and other aspects

of his payoff function, including ŷi, are common knowledge. In the remainder of the paper, ŷi

is fixed and we use ui(z, θi) to denote legislator i’s payoff from outcome z when his type is θi.

For simplicity we assume the chair’s preference is commonly known. Without loss of gener-

ality, assume ŷ0 < ỹ, i.e., the chair would like to move the policy to the left of the status quo.

To simplify notation, we write u0 (z) = x0 + θ0v (y, ŷ0) as the chair’s payoff from outcome z.

legislator j = 1, 2 with j 6= i. As is conventional in game theory, when we write (mi,mj), we refer to a message

profile in which legislator i sends the message mi and legislator j sends the message mj . We use analogous

notation for other vector of variables involving the two legislators.
7The assumption that x̃ = (0, 0, 0), together with the assumption on X, requires that the total surplus for

reaching an agreement is non-negative, legislator 1’s and legislator 2’s status quo cake shares are the same, and

the chair’s proposal cannot offer cake shares lower than his status quo for either legislator 1 or 2.
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We make the following assumptions on v: (1) v is twice differentiable; (2) v11 (y, ŷi) < 0

for all y ∈ Y (which implies that v is concave in y), and v (·, ŷi) reaches its maximum at ŷi;

(3) v satisfies the single-crossing property in (y, ŷi), i.e., if v (y′, ŷi) = v (y, ŷi) and y′ > y, then

(ŷ′i − ŷi) (v (y′, ŷ′i)) − v (y, ŷ′i)) > 0 for all y, y′, ŷi ∈ Y . This property implies that if legislator

i with position ŷi is indifferent between two policies y′ and y where y′ is to the right of y,

then, any legislator whose position is to the right of ŷi prefers y′ to y and any legislator whose

position is to the left of ŷi prefers y to y′. Note that the familiar quadratic-loss function,

v (y, ŷi) = − (y − ŷi)2, satisfies all of these assumptions.

The bargaining game consists of three stages. In the first stage, each legislator i observes

his type θi and the legislators simultaneously send private messages to the chair. In the second

stage, the chair observes the legislators’ messages and makes a proposal in Y × X. In the

last stage, the players vote on the proposal; the voting rule is majority rule. Without loss of

generality we assume that the chair always votes for the proposal. So if at least one of legislators

1 and 2 votes for the proposal, then it passes. Otherwise, the status quo s = (ỹ; x̃) prevails.

The set of allowed messages for legislator i, denoted by Mi, is an abstract, finite set that has

more than two elements. The messages have no literal meanings (we discuss their equilibrium

meanings later); they are also “cheap talk” since they do not affect the players’ payoffs directly.

The assumption that Mi is finite rules out the possibility of separating equilibria, but we show

that separating equilibria are not possible anyway, i.e. separating equilibria are not possible

even if Mi’s are infinite.

A strategy for legislator i consists of a message rule in the first stage and an acceptance

rule in the third stage. A message rule µi : Θi → Mi for legislator i specifies the message he

sends as a function of his type. An acceptance rule γi : Y × X × Θi → {0, 1} for legislator

i specifies how he votes as a function of his type: he votes for a proposal z if γi(z, θi) = 1

and against it if γi(z, θi) = 0.8 The strategy set for legislator i consists of pairs of measurable

functions (µi, γi) satisfying these properties. The chair’s strategy set consists of all proposal

rules π : M1×M2 → Y ×X where π(m1,m2) is the proposal she offers when receiving (m1,m2).

We focus on pure strategies and discuss conditions under which it is not restrictive to disallow

mixed strategies later.

8Technically a legislator’s acceptance rule can depend on his message. However, subgame perfection implies

that independent of the message he sent, legislator i accepts a proposal if and only if he prefers it to the status

quo. As such, we suppress the dependence of γi on mi.
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Fix a strategy profile (µ, γ, π). Say that a message profile m = (m1,m2) induces proposal

z if π (m) = z, and a message mi can induce proposal z if there exists type θj such that

m = (mi, µj(θj)) induces proposal z. Proposal z is elicitable if some message profile induces

it; proposal z can be elicited by type profile θ = (θ1, θ2) if it is induced by a message profile

m with mi = µi (θi); proposal z is elicited by type θi if it is induced by a message profile m

with mi = µi (θi) and {θj : µj(θj) = mj} is nonempty. Proposal z is accepted by legislator i of

type θi if γi(z, θi) = 1 and rejected by legislator i of type θi if γi(z, θi) = 0. If a proposal z is

induced by m, then, legislator i is pivotal with respect to z if γj (z, θj) = 0 for all θj such that

µj (θj) = mj and non-pivotal with respect to z otherwise.

Equilibrium: In order to define an equilibrium for this game, let βi(z|mi) denote the prob-

ability that legislator i votes to accept proposal z conditional on sending message mi. Given

the strategy (µi, γi) of legislator i, βi is derived by Bayes’ rule whenever possible.

An equilibrium is a strategy profile (µ, γ, π) such that the following conditions hold for all

i 6= 0, θi ∈ Θi, y ∈ Y, x ∈ X and m ∈M1 ×M2:

(E1) γi(z, ti) =

 1 if ui(z, ti) ≥ ui(s, ti),

0 if ui(z, ti) < ui(s, ti).

(E2) π (m) ∈ arg maxz′∈Y×X u0(z′)β(z′|m) + u0(s) (1− β(z′|m)), where

β(z′|m) = 1−
(
1− β1(z′|m1)

) (
1− β2(z′|m2)

)
is the conditional probability that z′ is accepted.

(E3) if µi (θi) = mi, then mi ∈ arg maxm′i Vi(m
′
i, θi) where

Vi(m
′
i, θi) =

∫
Θj

(
γj (z, θj)ui

(
π
(
m′i, µj (θj)

)
, θi
)

+ (1− γj (z, θj)) max{ui
(
π
(
m′i, µj (θj)

)
, θi
)
, ui (s, θi)}

)
dFj (θj) .

Condition (E1) is an implication of subgame perfection for the last stage of the game: it

requires the legislators to accept proposals that they prefer to the status quo.9 Condition

9We assume a legislator accepts z whenever indifferent between z and s. If z = s, the assumption is inconse-

quential as s would prevail whether or not legislator i accepts it. Otherwise, this assumption is not restrictive.This

is because if legislator i does not accept a proposal (not equal to s) when indifferent, then an optimal proposal

does not exist for the chair. To see this, note that if the chair has an optimal proposal (y, x) 6= s, then at least

one legislator i must strictly prefer it to s. But then there exists ε > 0 such that either (y, x′) with x′i = xi − ε

or (y′, x) with y′ = y− ε is another proposal that legislator i strictly prefers to s and makes the chair better off,

contradicting the optimality of (y, x).
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(E2) requires that equilibrium proposals maximize the payoff of the chair and that her belief

is consistent with Bayes’ rule. Condition (E3) requires that a legislator elicits only his most

preferred proposals among the ones that are possible in equilibrium (in the sense that there is

some message that induces it), taking into account the acceptance rule of the other legislator.

For expositional simplicity, from now on we assume that in equilibrium, if β (z|m) = 0, then

π (m) 6= z; i.e., if a proposal is rejected with probability 1, then the chair does not propose it.10

Say that a proposal z is elicited in the equilibrium (µ, γ, π) if there exist (θ1, θ2) ∈ Θ1 ×Θ2

such that z is elicited by (θ1, θ2); i.e. z = π(µ1(θ1), µ2(θ2)). It is sometimes convenient to classify

equilibria by the number of elicited proposals. Define the size of an equilibrium to be its number

of elicited proposals: #{z ∈ Y ×X|(θ1, θ2) ∈ Θ1 ×Θ2 such that z = π (µ1(θ1), µ2(θ2))}.

For any fixed strategy profile (µ, γ, π), denote by φµ,γ,π (θ1, θ2) the outcome for the type pro-

file (θ1, θ2) under (µ, γ, π); i.e., φµ,γ,π (θ1, θ2) = π (µ1 (θ1) , µ2 (θ2)) if γi(π (µ1 (θ1) , µ2 (θ2)) , θi) =

1 for at least one of i = 1, 2 and φµ,γ,π (θ1, θ2) = s otherwise. Say that two equilibria (µ, γ, π)

and (µ′, γ′, π′) are outcome-equivalent if φµ,γ,π = φµ
′,γ′,π′ .

A babbling equilibrium is an equilibrium (µ, γ, π) in which µi (θi) = µi (θ′i) for all θi, θ
′
i ∈ Θi,

i = 1, 2, i.e., all types of legislator i send the same message, and π (m) = π (m′) for all

m,m′ ∈M1×M2, i.e., the chair responds to all message profiles with the same proposal. As is

standard in cheap-talk models, a babbling equilibrium always exists.

3 Benchmark: complete information

We start by analyzing the benchmark game of complete information, i.e., θi is common knowl-

edge. Since there is no private information, the legislators’ messages are irrelevant for the chair’s

belief and her proposal. The modifications of the players’ strategies and equilibrium conditions

are straightforward and omitted. We next characterize the chair’s equilibrium proposal.

If v(ŷ0, ŷi) ≥ v(ỹ, ŷi) for some legislator i, i.e., if there is a legislator who prefers the chair’s

ideal policy to the status quo policy, then the chair’s problem is trivial: she proposes her ideal

and keeps all the private benefit herself. From now on, we assume v(ŷ0, ŷi) < v(ỹ, ŷi) for i = 1, 2.

Note that since ŷ0 < ỹ, this implies that ŷ0 < ŷi.

A useful piece of notation is e(ŷi) = min{y : v(y, ŷi) = v(ỹ, ŷi)}. Since v (y, ŷi) is increasing

10This is not a restrictive assumption if c > 0 because the chair strictly prefers the proposal (ỹ; c, 0, 0) (which

is accepted with probability 1) to the status quo, so z is not a best response. If c = 0, however, it is possible

that z is a best response, but not a unique one (for example, s is another best response).
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in y when y < ŷi, under the assumption that v(ŷ0, ŷi) < v(ỹ, ŷi), we have ŷ0 < e(ŷi) ≤ ỹ, and

e(ŷi) is the policy y that is closest to the chair’s ideal that leaves legislator i indifferent between

the status quo policy ỹ and y. Note that e(ŷi) is nondecreasing in ŷi and in addition, e(ŷi) = ỹ

if ŷi ≥ ỹ and e(ŷi) < ŷi < ỹ if ŷi < ỹ.

To start, suppose the chair face only one legislator, legislator 1. Assume that legislator 1

has veto power, i.e., for any proposal to pass, he must vote for it.

Given θ1, the chair chooses z1 (θ1) = (y1 (θ1) ;x1 (θ1)) to solve

max
z∈Y×X

u0(z) = c− x1 + θ0v(y, ŷ0)

subject to x1 + θ1v(y, ŷ1) ≥ θ1v(ỹ, ŷ1). Since u0 (z) is decreasing in x1, for x1
1 to be optimal, it

must satisfy x1
1 = θ1

(
v(ỹ, ŷ1)− v(y1, ŷ1)

)
. To satisfy x1

1 ≥ 0, we must have v(ỹ, ŷ1) ≥ v(y1, ŷ1).

Thus, substituting for x1 in the chair’s maximization problem, y1 must be a solution to

max
y∈Y

c− θ1 (v(ỹ, ŷ1)− v(y, ŷ1)) + θ0v(y, ŷ0)

subject to v(ỹ, ŷ1) ≥ v(y, ŷ1). Since v11 < 0, the objective function is strictly concave and hence

y1 is unique. If θ1v1(e(ŷ1), ŷ1) + θ0v1(e(ŷ1), ŷ0) > 0, then the constraint that v(ỹ, ŷ1) ≥ v(y, ŷ1)

is binding and we have a corner solution y1 = e(ŷ1) and x1
1 = 0. Otherwise, there exists a

unique y1 < e(ŷ1) such that θ1v1(y1, ŷ1) + θ0v1(y∗, ŷ0) = 0 ; in this case, x1
1 > 0.

When the chair faces two legislators instead of one, her bargaining position is improved

since the voting rule is the majority rule. Let z2 (θ2) denote the chair’s optimal proposal when

facing legislator 2 with ideological intensity θ2. If u0

(
zi (θi)

)
≥ u0

(
zj (θj)

)
, then zi (θi) is

optimal for the chair when he faces two legislators. Notice that it is possible that the legislator

whose ideal policy is further away from the chair’s is included in an optimal proposal. This can

happen when he puts sufficiently less weight on ideology than the other legislator does. Next,

we analyze the model in which the legislators’ ideological intensities are private information.

4 One sender

Although our focus is on the legislative bargaining game with three players and majority rule,

it is useful to first consider a simpler game in which there is only one legislator (sender) other

than the chair. In addition to gaining useful intuition from the analysis, the model is interesting

in its own right because it is applicable to situations of bilateral bargaining over two issues.
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Letting ΓS denote the game in which the set of legislators other than the chair is given by S,

in the section we consider the case in which S = {1}.

The modification of the players’ strategies and equilibrium conditions in Γ{1} are straight-

forward and omitted. To characterize equilibria, we establish the following lemma, which says

that between two proposals that offer different transfers: (i) if type θ1 weakly prefers the pro-

posal that gives him a larger transfer, then any lower type (i.e., any type who places a lower

weight on ideology) strictly prefers the proposal that gives him a larger transfer; (ii) if type

θ1 weakly prefers the proposal that gives him a smaller transfer, then any higher type strictly

prefers the proposal that gives him a smaller transfer. (Proofs omitted from the text are in

Appendix A.)

Lemma 1. (i) If type θ1 weakly prefers z′ = (y′;x′) to z = (y;x) where x′1 > x1, then any type

θ′1 < θ1 strictly prefers z′ to z. (ii) If type θ1 weakly prefers z′′ = (y′′;x′′) to z = (y;x) where

x′′1 < x1, then any type θ′′1 > θ1 strictly prefers z′′ to z.

A special case of Lemma 1 is worth noting: Suppose type θ1 is indifferent between the

status quo s and z = (y;x) where x1 > 0. If θ′1 < θ1, then type θ′1 strictly prefers z to s; if

θ′1 > θ1, then type θ′1 strictly prefers s to z. This immediately implies that legislator 1 does

not fully reveal his type in equilibrium.11 To see this, note that in a separating equilibrium,

legislator 1 would receive only his status quo payoff as the chair would make a proposal that

leaves him just willing to accept. But then type θ1 would want to mimic a higher type (i.e.,

exaggerate his ideological intensity) in order to get a better deal from the chair. In fact, we have

a much stronger result which says that there exists at most one equilibrium proposal that gives

legislator 1 positive private benefit and an equilibrium has at most size two. Before deriving this

result and characterizing size-two equilibria, it is useful to first characterize size-one equilibria.

4.1 Size-one equilibria

We focus on babbling equilibrium since any size-one equilibrium is outcome equivalent to a

babbling equilibrium. Let z′ be the proposal elicited in a babbling equilibrium.

To find z′, note that by Lemma 1, if u1

(
z, θ̄1

)
≥ u1

(
s, θ̄1

)
, then u1 (z, θ1) ≥ u1 (s, θ1) for all

θ1 ∈ Θ1 and so z is always accepted; if u1 (z, θ1) < u1 (s, θ1), then u1 (z, θ1) < u1 (s, θ1) for all

11To be more precise, legislator 1 does not fully reveal his type in equilibrium except in the degenerate case

where z1 (θ1) = (e (ŷ1) ; c, 0) for every θ1 ∈ Θ1. In this degenerate case, even if legislator 1 fully reveals his type,

the chair still always makes the same proposal (e (ŷ1) ; c, 0) and we have a size-one equilibrium.
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θ1 ∈ Θ1 and z is always rejected; if u1

(
z, θ̄1

)
< u1

(
s, θ̄1

)
and u1 (z, θ1) ≥ u1 (s, θ1), then there

exists θ1 ∈ Θ1 such that u1 (z, θ1) = u1 (s, θ1) and z is accepted with probability F1 (θ1).

Let t1 (z) denote the highest type who is willing to accept z if z is accepted with positive

probability and set t1 (z) to θ1 if z is accepted with probability 0. Formally

t1 (z) =

 max{θ1 ∈ Θ1 : u1 (z, θ1) ≥ u1 (s, θ1)} if u1 (z, θ1) ≥ u1 (s, θ1) ,

θ1 otherwise.

For z′ to be the proposal elicited in a babbling equilibrium, it must satisfy

z′ ∈ arg max
z∈Y×X

u0 (z)F1 (t1 (z)) + u0 (s) [1− F1 (t1 (z))].

Equivalently, we can formulate the chair’s problem as choosing the highest type who is willing

to accept her proposal. Let θ′1 be the highest type willing to accept z′. Let V (θ1) = u0

(
z1 (θ1)

)
denote the chair’s highest payoff when facing legislator 1 of type θ1. Then we have

θ′1 ∈ arg max
θ1∈Θ1

V (θ1)F1 (θ1) + u0 (s) (1− F1 (θ1)) . (1)

If the solution is unique, it is without loss of generality to consider only pure strategies. We

close this section by discussing sufficient conditions for uniqueness.

A sufficient condition for θ′1 to be unique is that the objective function is strictly concave.

Another sufficient condition for uniqueness is that the objective function is strictly increasing

in θ1. Lemma 7 in Supplementary Appendix shows that in the uniform-quadratic case (i.e., θ1

is uniformly distributed and v (y, ŷ1) = − (y − ŷ1)2), if y1 ≤ ỹ, then the objective function is

strictly increasing in θ1 and (1) has a unique solution at θ̄1; if y1 > ỹ, then (1) may have an

interior solution as well as a solution at θ̄1 but this happens only non-generically.

4.2 Size-two equilibria

The main finding in this subsection is that legislator 1 can credibly convey some information,

but only in a limited way. We first show that the number of proposals elicited in an equilibrium

is at most two and then characterize size-two equilibria and provide existence conditions.

The following lemma says that there can be at most one proposal elicited in equilibrium

that gives legislator 1 strictly positive private benefit.

Lemma 2. Suppose proposals z′ = (y′;x′) and z′′ = (y′′;x′′) are elicited in an equilibrium in

Γ{1}. If x′1 > 0 and x′′1 > 0, then z′ = z′′.

11



To gain some intuition, suppose there are two equilibrium proposals z′ and z′′ that give

legislator 1 positive private benefits. Then there exists a type θ′1 who elicits z′ and is indifferent

between z′ and the status quo, and another type θ′′1 who elicits z′′ and is indifferent between

z′′ and the status quo. Without of loss of generality assume θ′′1 > θ′1. But then by Lemma 1

type θ′1 strictly prefers to elicit z′′, a contradiction. So only one equilibrium proposal can have

x1 > 0. For such a proposal, it must be true that y < e (ŷ1). When proposing it, the chair

makes some transfer to legislator 1 in exchange for moving the policy towards her own ideal.

Now consider a proposal (y; c, 0) that does not give legislator 1 any private benefit. If

e (ŷ1) ≤ y ≤ ỹ, then all types accept it; if y < e (ŷ1), no type accepts it. Since v (y, ŷ0) is

decreasing in y when y ≥ e (ŷ1), we must have y = e (ŷ1).

Hence there are at most two proposals elicited in an equilibrium: one is (e (ŷ1) ; c, 0) and the

other is (y; c− x1, x1) with y < e (ŷ1) and x1 > 0. In what follows, let z̆ denote the proposal

(e (ŷ1) ; c, 0). Let type θ∗1 be the type indifferent between (y; c− x1, x1) and z̆. By Lemma 1,

if θ1 < θ∗1, then type θ1 strictly prefers (y; c− x1, x1) to z̆ and hences elicits (y; c− x1, x1). If

θ1 > θ∗1, then type θ1 strictly prefers z̆ to (y; c− x1, x1). A type θ1 > θ∗1 may elicit z̆ and accept

it or elicit (y; c− x1, x1) and reject it because either way he gets the status quo payoff. To

summarize, we have the following result.

Proposition 1. In Γ{1}: (i) At most two proposals are elicited in any equilibrium. (ii) In a

size-two equilibrium, the elicited proposals are z̆ and (y; c− x1, x1) with y < e (ŷ1) and x1 > 0.

There exists a type θ∗1 such that if θ1 < θ∗1, type θ1 elicits (y; c− x1, x1) and accepts it; if θ1 ≥ θ∗1,

type θ1 either elicits (y; c− x1, x1) and rejects it or elicits z̆ and accepts it.

Proposition 1 says that type above θ∗1 may either elicit (y; c− x1, x1) and reject the proposal,

or elicit z̆ and accept it. Note, however, that if there were any possibility of a “tremble” by

legislator 1 at the voting stage, that is, if he might vote for a proposal even though he strictly

prefers the status quo to it, then his best message rule is to safely elicit z̆ if θ1 > θ∗1. The chair

benefits if all θ1 > θ∗1 elicits z̆, since the chair prefers the outcome z̆ to the status quo.

Suppose the types who elicit the same proposal in equilibrium send the same message,12

and m1
1 induces (y; c− x1, x1) and m2

1 induces z̆. We can interpret m1
1 as the “compromise”

message and m2
1 as the “fight” message. Since any type below θ∗1 sends m1

1, when the chair

receives m1
1, she infers that legislator 1 is likely to have a low ideological intensity, and responds

12This loses no generality because any size-two equilibrium is outcome equivalent to such an equilibrium.
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with a “compromise” proposal that moves the policy towards her own ideal. Only types above

θ∗1 sends m2
1. When the chair receives m2

1, she infers that legislator 1 is intensely ideological, and

responds with a proposal that involves minimum policy change and no transfer for legislator 1.

Note that, multiple size-two equilibria exist with different set of elicited proposals corresponding

to different thresholds θ∗1.

Existence: Recall that z1 (θ1) is the chair’s optimal proposal when θ1 is known.

Proposition 2. A size-two equilibrium exists in Γ{1} if (i) z1
(
θ̄1

)
= z̆ and (ii) z1 (θ1) =

(y; c− x1, x1) for some y < e (ŷ1) and x1 > 0.

The conditions in Proposition 2 require the chair’s optimal proposal to be z̆ when she is

sure that legislator 1 is of the highest type and to be a proposal that has y < e(ŷ1) and x1 > 0

when she is sure that legislator 1 is of the lowest type. Intuitively, under these conditions, there

exists a type θ∗1 ∈ (θ1, θ̄1) such that z̆ is optimal when the chair believes that θ1 ∈
(
θ∗1, θ̄1

)
and

(y; c− x1, x1) is optimal when the chair believes that θ1 ∈ (θ1, θ
∗
1), which in turn guarantees

that a size-two equilibrium exists.

4.3 Comparative statics: equilibria of different sizes

A natural question is whether the players are better off in an equilibrium of higher size. The

chair clearly (weakly) prefers a size-two equilibrium to a size-one equilibrium because her de-

cisions are based on better information in a size-two equilibrium. As to legislator 1, consider

the following two cases. (i) Suppose z̆ is elicited in a size-one equilibrium. Then legislator 1’s

payoff is the same as his status quo payoff. Since in any size-two equilibrium, the payoff of any

type θ1 ≥ θ∗1 is the same as his status quo payoff and the payoff of any type θ1 < θ∗1 is strictly

higher than his status quo payoff, legislator 1 is better off in a size-two equilibrium. (ii) Sup-

pose z′ 6= z̆ is elicited in a size-one equilibrium. Whether legislator 1 is better off in a size-two

equilibrium depends on the size-two equilibrium under consideration. But it is worth noting

that for any size-one equilibrium in which z′ is rejected with positive probability, a size-two

equilibrium exists in which every type of legislator 1 has the same payoff as that in the size-one

equilibrium.13 In this sense, legislator 1 is again (weakly) better off in a size-two equilibrium.

13To construct it, let θ′1 < θ̄1 be the type who is just willing to accept z′. Let µ1 (θ1) = m1
1 for θ1 ≤ θ′1,

µ1 (θ1) = m2
1 for θ1 > θ′1, π

(
m1

1

)
= z′, π

(
m2

1

)
= z̆ and π (m) ∈ {π

(
m1

1), π
(
m2

1

))
} for any other m1 ∈ M1. In

this size-two equilibrium, the payoff for any θ1 < θ′1 is u1 (z′, θ1) and the payoff for any θ1 ≥ θ′1 is u1 (s, θ1), the

same as in the size-one equilibrium.
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5 Two senders

We now analyze Γ{1,2}, the game with two legislators. Without loss of generality, assume that

ŷ1 ≤ ŷ2, which implies that e (ŷ1) ≤ e (ŷ2). Since legislator 1’s ideal point is closer to the chair’s,

we call legislator 1 the closer legislator and legislator 2 the more distant legislator. We focus

on a class of equilibria called monotone equilibria. An equilibrium (µ, γ, π) is monotone

if it satisfies the following property: for any θ′i ≤ θ′′i and i = 1, 2, if µi (θ′i) = µi (θ′′i ), then

µi (θi) = µi (θ′i) for any θi ∈ [θ′i, θ
′′
i ]. In a monotone equilibrium, the set of types that send the

same message is an interval, possibly a singleton.

5.1 Proposals elicited in monotone equilibria

Say that a proposal (y;x) is a one-transfer proposal if either x1 > 0 or x2 > 0 but not both,

a two-transfer proposal if both x1 > 0 and x2 > 0, and a no-transfer proposal if x1 = 0 and

x2 = 0. The following lemma provides a sufficient condition under which no proposal elicited

in a monotone equilibrium is a two-transfer proposal.

Lemma 3. Suppose in Γ{1,2}, Fi has a differentiable density function fi for i = 1, 2. If

fi(θi)/(1− Fi(θi)) is strictly increasing in θi, then any proposal elicited in a monotone equilib-

rium has xi > 0 for at most one legislator i 6= 0.

Notice that fi(θi)/(1−Fi(θi)) is the hazard rate. Lemma 3 says that if the prior on θi satisfies

the increasing hazard rate property, then no proposal elicited in a monotone equilibrium is a

two-transfer proposal. Many distribution functions, including uniform, normal, log-normal and

beta distributions, have increasing hazard rates. This property is also frequently used in the

economics and political science applications.14

Too see why Lemma 3 holds, consider the support of the chair’s posterior on θi. If it is a

singleton for at least one of the legislators, say legislator 1, then the chair’s posterior on θ1 is

degenerate, which implies that given any proposal, the chair knows whether legislator 1 will

accept or reject it. A two-transfer proposal is not optimal because if legislator 1 accepts it, then

the chair is strictly better off reducing x2 and if legislator 1 rejects it, then the chair is strictly

better off reducing x1. If the support of the posterior on θi is not a singleton for both i = 1, 2,

then a two-transfer proposal results in a positive probability that both legislators vote for the

14See Bagnoli and Bergstrom (2005) for a list of distribution functions that satisfy the monotone hazard rate

property and references to some of the seminal papers that assume it.
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proposal, which is “wasteful” for the chair because she needs only one other vote to pass her

proposal. Under increasing hazard rate property, the waste is sufficiently high that it is not

optimal for the chair to give transfer to both legislators.

The next two lemmas establish some properties of no-transfer proposals and one-transfer

proposals, which are useful in equilibrium characterization.

Lemma 4. Suppose z = (y;x) is elicited in an equilibrium in Γ{1,2} with x1 = x2 = 0. Then

(i) y = e (ŷ1). (ii) u1 (z, θ1) = u1 (s, θ1) for any θ1. (iii) If e (ŷ1) = e (ŷ2), then u2 (z, θ2) =

u2 (s, θ2) for any θ2. (iv) If e (ŷ1) < e (ŷ2), then u2 (z, θ2) < u2 (s, θ2) for any θ2 and legislator

1 is pivotal.

Lemma 4 says that a no-transfer proposal z must make the ideologically closer legislator

just willing to accept. Therefore, if e (ŷ1) = e (ŷ2), then legislator 2 is indifferent between z and

s and both legislators accept z, but if e (ŷ1) < e (ŷ2), then legislator 2 rejects z and legislator 1

is pivotal. Henceforth, we denote the optimal no-transfer proposal (e(ŷ1); c, 0, 0) by zNT .

Lemma 5. Suppose z = (y;x) is elicited in an equilibrium in Γ{1,2} and xi > 0, xj = 0. Then

any type of legislator j strictly prefers the status quo s to z, but some types of legislator i strictly

prefers z to s. Hence legislator j rejects z and legislator i is pivotal.

Lemma 5 says that the legislator who is excluded in a one-transfer proposal rejects it, making

the legislator who is included pivotal.

If F1 and F2 satisfy the increasing hazard rate property, then by Lemma 3, any proposal

elicited in a monotone equilibrium is either a no-transfer proposal or a one-transfer proposal.

This greatly simplifies the problem of characterizing elicited proposals in a monotone equi-

librium. Specifically, recall that ti (z) is the highest θi willing to accept z if some θi ∈ Θi

prefers z to s and ti (z) = θi otherwise. Suppose the chair’s posterior is G = (G1, G2). Let

β (z) = 1− [1−G1 (t1 (z))][1−G2 (t2 (z))] and

z (G) ∈ arg max
z∈Y×X

u0 (z)β (z) + u0 (s) (1− β (z)) .

That is, z (G) is an optimal proposal for the chair under belief G. Let U0 (G) be the associated

value function, i.e., U0 (G) is the highest expected payoff for the chair under belief G.

Denote by z−i (G−i) a proposal that gives the chair the highest expected payoff among

all the proposals that exclude legislator i, under belief G−i, and let U−i0 (G−i) denote the

associated value function. Note that z−i (G−i) does not depend on Gi because for any proposal
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that excludes i, either every θi accepts it or no θi accepts it. Fix a monotone equilibrium

(γ, µ, π). Let H (m) = (H1 (m1) , H2 (m2)) be the chair’s posterior when receiving m. By

Lemma 3, for any m sent in (γ, µ, π), z (H (m)) is not a two-transfer proposal and therefore

U0 (H (m)) = maxi=1,2 U
−i
0 (H−i (m−i)). Note that U−i0 (H−i (m−i)) ≥ u0

(
zNT

)
for i = 1, 2.

Hence, if U−i0 (H−i (m−i)) > U−j0 (H−j (m−j)), then it is optimal for the chair to exclude i and

include j. If U−i0 (H−i (m−i)) = u0

(
zNT

)
for i = 1, 2, then proposing zNT is optimal when

receiving m.

Since a babbling equilibrium is a monotone equilibrium, all the results established for

monotone equilibrium apply. Specifically, suppose F1 and F2 satisfy the increasing hazard

rate property. If U−i0 (F−i) > U−j0 (F−j) ≥ u0(zNT ), then the proposal elicited in a babbling

equilibrium includes j and excludes i; if U−1
0 (F−1) = U−2

0 (F−2) > u0(zNT ), then the pro-

posal elicited in a babbling equilibrium is a one-transfer proposal that includes either 1 or 2;

if U−1
0 (F−1) = U−2

0 (F−2) = u0(zNT ), then there exists a babbling equilibrium in which the

no-transfer proposal zNT is elicited.

5.2 Informative equilibria

In this section, we characterize equilibria in Γ{1,2} in which some information is transmitted.

Throughout this section, we assume that F1 and F2 satisfy the monotone hazard rate prop-

erty. Fix a monotone equilibrium (γ, µ, π) and consider the proposals π (m′) and π (m′′) where

m′i = m′′i . Suppose both π(m′) and π(m′′) exclude legislator j. As shown in the previous

section, this implies that z−j (H−j (m′i)) is an optimal proposal when the chair receives m′

and z−j (H−j (m′′i )) is an optimal proposal when she receives m′′. If z−j (H−j (m′i)) is unique,

then, since m′i = m′′i and both π (m′) and π (m′′) exclude j, we must have π (m′) = π (m′′) =

z−j (H−j (m′i)). If z−j (H−j (m′i)) is not unique, however, then conceivably π(m′) 6= π(m′′), but

this requires that the chair chooses different proposals – none of which include legislator j – for

different messages sent by legislator j, although she has the same belief about legislator i.

Call a monotone equilibrium (γ, µ, π) a simple monotone equilibrium (SME) if the

following condition is satisfied: for any m′ and m′′ such that m′i = m′′i , if both π(m′) and π(m′′)

exclude legislator j, then π(m′) = π(m′′). We find this to be a reasonable refinement because

when the chair optimally excludes legislator j, her proposal depends only on her belief about

legislator i’s type, which has nothing to do with what legislator j says. This refinement is also

automatically satisfied if z−j (H−j (m′i)) is unique. (Uniqueness of z−j (H−j (m′i)) holds under
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some familiar functional forms: Lemma 7 in Supplementary Appendix implies that if Hi (m′i)

is a uniform distribution and v (y, ŷi) = − (y − ŷi)2, then z−j (H−j (m′i)) is unique.)

Say that µi is a size-one message rule if µi (θi) = µi (θ′i) for all θi, θ
′
i ∈ Θi. Say that µi is

a size-two message rule if there exists a set Ai ⊂ Θi with Pi (θi ∈ Ai) ∈ (0, 1) such that (i)

µi (θi) = µi (θ′i) if either θi, θ
′
i ∈ Ai or θi, θ

′
i ∈ Θi\Ai and (ii) µi (θi) 6= µi (θ′i) if θi ∈ Ai and

θ′i ∈ Θi\Ai.

Recall that φµ,γ,π (θ1, θ2) is the outcome for type profile (θ1, θ2) under (µ, γ, π). Fix an

equilibrium (µ, γ, π). Say that µi is equivalent to µ′i if for almost all (θ1, θ1) ∈ Θ1×Θ2, we have

φµ,γ,π (θ1, θ2) = φµ
′,γ,π (θ1, θ2) where µ′j = µj . The message rule µi is equivalent to µ′i in the

sense that the joint distributions on type profiles and outcomes are the same under µi and µ′i,

holding the other strategies in (µ, γ, π) fixed.

Say that legislator i is uninformative in equilibrium (µ, γ, π) if there exists a size-one message

rule µIi such that µi is equivalent to µIi and legislator i is informative in equilibrium (µ, γ, π)

otherwise. Say that (µ, γ, π) is an informative equilibrium if at least one legislator is informative

in (µ, γ, π).

For any z ∈ Y × X, let Ii (z) = 1 if z includes legislator i and Ii (z) = 0 if z excludes

legislator i. Let q1 (m1) =
∫

Θ2
I1 (π (m1, µ2 (θ2))) dF2 be the probability that legislator 1 is

included when sending m1 in (µ, γ, π). Similarly, let q2 (m2) =
∫

Θ1
I2 (π (µ1 (θ1) ,m2)) dF1.

Proposition 3. Fix a simple monotone equilibrium (µ, γ, π). If legislator i is informative in

this equilibrium, then there exist m′i, m̂i ∈ Mi such that qi (m′i) > 0, qi (m̂i) = 0 and µi is

equivalent to a size-two message rule µIIi with the property that there exists θ∗i ∈
(
θi, θ̄i

)
such

that µIIi (θi) = m′i for θi < θ∗i and µIIi (θi) = m̂i for θi > θ∗i .

Proposition 3 says that in any SME, legislator i can convey only a limited amount of

information in that even when informative, his message rule is equivalent a size-two message

rule. To give a sketch of the proof, we first show that in (µ, γ, π), there exists at most one mi

sent by a positive measure of θi such that qi (mi) > 0; when such a message exists, the types

who send this message forms an interval at the lower end of Θi. We also show that there exists

at most one message mi sent by a single type such that qi (mi) > 0. So at most two mi’s

have the property that qi (mi) > 0 and one of them is sent by only a single type. Consider

the following two possibilities: (a) Suppose there exists no mi sent with positive probability

such that qi (mi) > 0. Then with probability 1, qi (µi (θi)) = 0. Since the proposal and the
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resulting outcome does not depend on mi if legislator i is excluded in a SME, it follows that µi

is equivalent to a size-one message rule such that every θi sends the same messsage that results

in probability 1 that legislator i is excluded. (b) Suppose there exists m′i sent with positive

probability that such that qi (m′i) > 0. If legislator i is informative, then there exists m̂i sent

by some type such that qi (m̂i) = 0. Since in (µ, γ, π), the types who send m′i form an interval

at the lower end of Θi, there exists a threshold θ∗i such that any type below θ∗i send m′i and

almost every type above θ∗i sends a message that results in probability 1 that i is excluded.

Hence µi is equivalent to µIIi such that µIIi (θi) = m′i for θi < θ∗i and µIIi (θi) = m̂i for θi > θ∗i .

Proposition 4. Fix a simple monotone equilibrium (µ, γ, π). (i) At most one legislator is

informative in (µ, γ, π). (ii) If e (ŷ1) < e (ŷ2), then legislator 2 is uninformative in (µ, γ, π).

To gain some intuition for Proposition 4, imagine that both legislators are informative in

(µ, γ, π). Then, by Proposition 3, both legislators are included with positive probability. By

Lemma 5, a legislator’s payoff is weakly higher than his status quo payoff when included, but

strictly lower than his status quo payoff when the other legislator is included. So, independent

of his type, each legislator has an incentive to send the message that generates the highest

probability of inclusion. But as shown in Proposition 3, if a legislator is informative, then

with positive probability, he sends a message that results in zero probability of inclusion, a

contradiction. As to why legislator 2 is uninformative when e (ŷ1) < e (ŷ2), note that in this

case, under the no-transfer proposal zNT , legislator 2’s payoff is strictly lower than his status quo

payoff. Therefore, between m′2 and m̂2 as described in Proposition 3, every type of legislator 2

strictly prefers to send m′2 (with q2 (m′2) > 0) than m̂2 (with q2 (m̂2) = 0), again a contradiction.

What are the proposals elicited in an informative equilibrium? Consider an SME (µ, γ, π) in

which legislator i is informative. For simplicity, assume µj (θj) = m∗j and µi (θi) = m′i for θi < θ∗i

and µi (θi) = m̂i for θi > θ∗i where qi (m′i) > 0 and qi (m̂i) = 0. Since qi (m̂i) = 0, π(m̂i,m
∗
j )

excludes legislator i. Suppose π(m̂i,m
∗
j ) includes legislator j. Then, by Lemma 5, legislator j

is pivotal with respect to π(m̂i,m
∗
j ) and accepts it with positive probability. This implies that

by sending m̂i, type θi’s payoff is strictly lower than ui (s, θi). Since qi (m′i) > 0, π(m′i,m
∗
j )

includes legislator i. By Lemma 5, type θi’s payoff by sending m′i is weakly higher than ui (s, θi).

Therefore any type θi > θ∗i has an incentive to deviate and send m′i, a contradiction. It follows

that π(m̂i,m
∗
j ) excludes j as well as i and π(m̂i,m

∗
j ) = zNT . As to π(m′i,m

∗
j ), it must have

y < e (ŷ1) , xi > 0 and xj = 0. To summarize:
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Proposition 5. Fix an informative simple monotone equilibrium (µ, γ, π) in which legislator

i follows a size-two message rule and legislator j follows a size-one message rule. Then there

exists θ∗i ∈
(
θi, θ̄i

)
such that for any θj ∈ Θj, if θi > θ∗i , then π(µi(θi), µj(θj)) = zNT ; and if

θi < θ∗i , then π(µi(θi), µj(θj)) = (y;x) with y < e(ŷ1), xi > 0, and xj = 0.

Similar to the one-sender case, we can interpret the message sent by types below θ∗i as the

“compromise” message, and the message sent by types above θ∗i as the “fight” message. The

chair responds to the “compromise” message with a proposal that gives legislator i some private

benefit and moves the policy towards her own ideal and responds to the “fight” message with a

proposal that involves minimum policy change and gives no private benefit to either legislator.

Our analysis has focused on monotone equilibria. Similar to Γ{1}, non-monotone equilibria

may exist in which legislator j babbles, types θi < θ∗i of legislator i elicit (y;x) with y < e(ŷ1),

xi > 0, and xj = 0, and types θi > θ∗i of legislator i either elicit zNT and accept it, or elicit

(y;x) and reject it. Note that similar to Γ{1}, these non-monotone equilibria are not robust to

“trembles” by either legislator at the voting stage, i.e., if either legislator might not carry out

a planned rejection, then legislator i’s best message rule is to safely elicit zNT when θi > θ∗i .

To illustrate what an informative equilibrium looks like, we provide the following example.

Example 1. Suppose ỹ = 0, ŷ0 = −1, ŷ1 = −0.2, ŷ2 = 0.5, c = 1. Assume that player i’s

utility function is xi − θi (y − ŷi)2, θ0 = 1, and θ1, θ2 are both uniformly distributed on [1
4 , 4].

Suppose µ1 (θ1) = m′1 if θ1 ∈ [1
4 , 1] and µ1 (θ1) = m̂1 if θ1 ∈ (1, 4];15 µ2 (θ2) = m∗2 for all θ2.

Given the message rules, when the chair receives m′1, she infers that θ1 ∈ [1
4 , 1]. Calculation

shows that π (m′1,m
∗
2) = (−0.6; 0.88, 0.12, 0), a proposal that gives legislator 1 positive transfer

and moves the policy towards the chair’s ideal.16 When the chair receives m̂1, she infers that

θ1 ∈ (1, 4]. Calculation shows that it is optimal to propose zNT = (−0.4; 1, 0, 0). Intuitively,

it is too costly for the chair to move the policy closer to her ideal because legislator 1 is too

intensely ideological and legislator 2 holds an ideological position that is too far away.

15Here we let θ∗1 = 1, but there are many other equilibria given by different thresholds.
16 In this example, the proposal that the chair makes in response to (m′1,m

∗
2) is accepted with probability

1 by legislator 1. This is a feature of the example and does not hold in general. For example, suppose the

distribution of θ1 is a truncated exponential distribution on [ 1
4
, 4] with the parameter λ = 4, i.e., F1(θ1) =(

e−1 − e−4x
)
/
(
e−1 − e−16

)
. Keep all the other parametric assumptions unchanged and assume µ1 (θ1) = m′1 if

θ1 ∈ [ 1
4
, 2] and µ1 (θ1) = m̂1 if θ1 ∈ (2, 4] and µ2 (θ2) = m∗2 for all θ2. Then π (m′1,m

∗
2) = (−0.585; 0.883, 0.117, 0)

and it is rejected by all types of legislator 2 and accepted by legislator 1 if and only if θ1 ≤ 1.076. Hence it is

rejected with strictly positive probability.
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Existence of informative equilibria: We provide sufficient conditions for the existence of

SME in which legislator 1 is informative. The conditions are similar for SME in which legislator

2 is informative, with the additional requirement that e (ŷ1) = e (ŷ2).

The existence conditions for informative equilibria in Γ{1,2} are analogous to those for size-

two equilibria in the one-sender game, but with the additional necessary condition that it is

optimal for the chair to exclude legislator 2. This is guaranteed if U−1
0 (F−1) = u0

(
zNT

)
. To

see this, recall that U−1
0 (F−1) is the highest payoff the chair gets by excluding legislator 1.

If U−1
0 (F−1) = u0

(
zNT

)
, then no proposal that includes legislator 2 gives the chair a higher

payoff than zNT and therefore it is optimal for the chair to exclude 2. Recall that z1 (θ1) is the

chair’s optimal proposal when facing only legislator 1 with known θ1. We have the following

result (the proof is omitted since it is similar to the proof of Proposition 2):

Proposition 6. Suppose F1 and F2 satisfy the property of increasing hazard rate. A monotone

simple equilibrium in which legislator 1 is informative exists if (i) z1
(
θ̄1

)
= (e (ŷ1) ; c, 0), (ii)

z1 (θ1) = (y;x) where y < e (ŷ1) and x1 > 0, and (iii) U−1
0 (F−1) = u0

(
zNT

)
.

5.3 Comparative statics

Two comparisons seem especially interesting. The first is the comparison between informative

and uninformative equilibria in Γ{1,2}. The second is the comparison of equilibria in Γ{1,2} and

those in Γ{1}, which allows us to answer: is the chair always better off bargaining with more

legislators? Surprisingly, we show below that although the chair needs only one legislator’s

support to pass a proposal, she may be worse off when facing two legislators than just one.

Comparing informative and uninformative equilibria: Let Eu be an uninformative equi-

librium and EI be an SME in which legislator i is informative in Γ{1,2}. Since the chair benefits

from information transmission, she is better off in Eu than in EI . The welfare comparison for

the informative legislator is similar to that in the one-sender case (page 13); in particular, the

informative legislator benefits from information transmission as well. The uniformative legisla-

tor j, however, may be made worse off when legislator i is informative. To illustrate, suppose

the proposal elicited in Eu is zNT . Since in an informative SME the elicited proposals are zNT

and (y;x) with y < e (ŷ1) and xj = 0, and legislator j prefers e (ŷ1) to any y < e (ŷ1), he is

better off in Eu. Intuitively, in EI , when legislator i signals willingness to compromise, the

chair moves the policy towards her ideal and gives legislator i some private benefit in exchange

for his support. Since legislator j is excluded, he is made worse off.
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Does it benefit the chair to face more legislators? Under complete information, the chair

is clearly better off bargaining with two legislators than only one because she gains flexibility as

to who to make a deal with, as shown at the end of section 3. Under asymmetric information,

however, the answer is less clear. As illustrated in the following example, having two legislators

may result in less information transmitted in equilibrium and this hurts the chair.

Example 2. Suppose c = 1, ỹ = 0, u0 (z) = x0 − θ0 (y − ŷ0)2 where θ0 = 1, ŷ0 = −1 and

u1(z, θ1) x1 − θ1 (y − ŷ1)2 where ŷ1 = −0.2 and θ1 is uniformly distributed on [1
4 , 4].

Size-two equilibria exist in Γ{1}, in which the chair faces only legislator 1. For instance,

analogous to Example 1, a size-two equilibrium exists in which µ1 (θ1) = m′1 if θ1 ∈ [1
4 , 1]

and µ1 (θ1) = m̂1 if θ1 ∈ (1, 4]. The chair’s payoff in this equilibrium is 0.656. Now consider

Γ{1,2} in which the chair faces legislator 2 as well as legislator 1.17 Suppose u2(z, θ2) = x2 −

θ2 (y − ŷ2)2 where ŷ2 = −0.201 and θ2 is uniformly distributed on [5, 10]. Since e (ŷ2) < e (ŷ1),

by Proposition 4, legislator 1 is not informative in any SME in Γ{1,2}. Calculation shows that

z2(θ2) = (y;x) where y = e(ŷ2) and x2 = 0. So condition (ii) in Proposition 6 (adapted to

legislator 2) fails, and legislator 2 is not informative in any SME either. In an uninformative

equilibrium in Γ{1,2}, the proposal zNT = (−0.402; 1, 0, 0) is elicited and the chair’s payoff is

0.642 , lower than 0.656 , the payoff in the size-two equilibrium that we identified in Γ{1}.

In the preceding example, the chair is made worse off when we add legislator 2 whose

position is closer to the chair’s (making it impossible for 1 to be informative) but who is

intensely ideological (making it impossible for himself to be informative). What happens if we

add a legislator whose position is further away from the chair’s? Can it still result in information

loss? The next example shows that the answer is yes. Suppose u2(z, θ2) = x2 − θ2 (y − ŷ2)2

where ŷ2 = −0.1 and θ2 is uniformly distributed on [1
4 ,

4
5 ]. Since e (ŷ1) < e (ŷ2), by Proposition

4, legislator 2 is uninformative in any SME in Γ{1,2}. Calculation shows that conditional on

excluding 1, the chair’s optimal proposal includes 2. In particular, z−1 (F−1) = (y;x) where

y = −0.6 and x2 = 0.192 . So condition (iii) in Proposition 6 fails and it is not possible for

legislator 1 to be informative in any SME in Γ{1,2} either.18 The chair’s proposal includes 2 in

17Although earlier we assumed that ŷ1 ≤ ŷ2 for expositional convenience, in this example, in order to discuss

all possibilities, we allow ŷ1 > ŷ2.
18To see this, note that if there exists an SME in which legislator 1 is informative, then the chair responds to

his “fight” message by including legislator 2 making legislator 1 strictly worse off than the status quo and giving

him an incentive to deviate.
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any uninformative equilibrium in Γ{1,2}, resulting in a payoff of 0.648, still lower than 0.656.

So, the chair is again worse off when she faces two legislators than one.

To summarize, under asymmetric information, the chair may be better off bargaining with

only one legislator when the information loss resulting from having two legislators is sufficiently

high. This contrasts with Krishna and Morgan (2001b), in which the decision maker is never

worse off when facing two experts than one. In their model, for any equilibrium in the one-

expert case, there exists an equilibrium when another expert is added which gives the decision

maker a payoff at least as high as his original equilibrium payoff.

5.4 Benefits of bundled bargaining

Since the legislators bargain over both an ideological dimension as well as a distributive di-

mension, a natural question is whether the proposer is better off bundling the two dimensions

or negotiating them separately. In the model considered so far, they are bundled because the

chair makes a proposal on both dimensions and the two dimensions are accepted or rejected

together by the legislators. (In the following discussion, we call this the “bundled bargaining”

game.) Alternatively, we can consider a game in which the chair, after receiving the messages

sent by the legislators, makes a proposal on only the ideological dimension and another on only

the distributive dimension. The legislators vote on each proposal separately and majority rule

determines whether a proposal passes or the status quo (on that dimension) prevails. In this

“separate bargaining” game, it is possible that a proposal on one dimension passes while the

proposal on the other dimension fails to pass.

The chair is better off in the bundled bargaining game. To see why, note that in the separate

bargaining game, the legislators’ private information is irrelevant since it is about how they trade

off one dimension for the other, not about their preferences on either dimension. The resulting

unique equilibrium outcome is zNT . In the bundled bargaining game, zNT is still feasible and

will pass with probability 1 if proposed, and this immediately implies that the chair cannot be

worse off. In fact, for the chair, there are two advantages from bundling: (1) Useful information

may be revealed in equilibrium, as seen in Proposition 5. (2) Given the information she has,

the chair can use private benefit as an instrument to make better proposals that exploit the

difference in how the players trade off the two dimensions. Because of these two advantages, if

the chair could choose between bundled bargaining and separate bargaining, the chair would

choose bundled bargaining. As to the other legislators, they get their status quo payoffs in
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the separate bargaining game, but in the bundled bargaining game, the informative legislator

is better off than the status quo whereas the other, uninformative legislator, is worse off than

the status quo. This result is reminiscent of the finding in Jackson and Moselle (2002), who

also show that legislators may prefer to make proposals for the two dimensions together despite

separable preferences, but their model has no asymmetric information or communication.

6 Concluding remarks

In this paper, we develop a new model of legislative bargaining that incorporates private in-

formation about preferences and allows speech making before a bill is proposed. Although

the model is simple, our analysis generates interesting predictions about what speeches can be

credible even without commitment and how they influence proposals and legislative outcomes.

We believe that both private information and communication are essential elements of the

legislative decision making process. Our paper has taken a first step in understanding their

roles in the workings of a legislature. There are many more issues to explore and many ways

to generalize and extend our model and what follows is a brief discussion of some of them.

Our motivation for incorporating private information into legislative bargaining is that indi-

vidual legislators know their preferences better than others. Another possible source of private

information is that some legislators may have better information (perhaps acquired through

specialized committee work or from staff advisors) regarding the consequences of certain poli-

cies, which is relevant for all legislators. Although the role of this kind of “common value”

private information in debates and legislative decision making has been studied in the liter-

ature (e.g. Austen-Smith (1990)), it is only in the context of one-dimensional spatial policy

making. It would be interesting to explore it further when there is tradeoff between ideology

and distribution of private benefits.

In our model the chair does not have private information about her preference, consistent

with the observation that bill proposers are typically established members with known positions.

But sometimes legislators can be uncertain about what exactly the legislative leaders’ goals

are, in particular, how much compromise the leaders are willing to make to accommodate their

demands in exchange for their votes. In this case, apart from speeches, the proposal that the

chair puts on the table may also reveal some of his private information. This kind of signaling

effect becomes especially relevant when the legislators have interdependent preferences or when
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the proposal is not an ultimatum but can be modified if agreement fails.

We have focused on a specific extensive form in which the legislators send messages simul-

taneously. It would be interesting to explore whether and how some of our results change if the

legislators send messages sequentially. In that case, the design of the optimal order of speeches

(from the perspective of the proposer as well as the legislature) itself is an interesting ques-

tion. Another design question with respect to communication protocol is whether the messages

should be public or private. Although this distinction does not matter for the model we ana-

lyzed because we assume simultaneous speeches and one round of bargaining, it would matter

if either there were multiple rounds of bargaining or the preferences were interdependent.
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Appendix A

Proof of Lemma 1. (i) Since type θ1 weakly prefers z′ to z, we have x′1 + θ1v (y′, ŷ1) ≥ x1 +

θ1v (y, ŷ1), which implies that x′1 − x1 ≥ θ1 (v (y, ŷ1)− v (y′, ŷ1)).

Suppose v (y, ŷ1) − v (y′, ŷ1) ≤ 0. Since x′1 − x1 > 0 and θ′1 > 0, it follows that x′1 − x1 >

0 ≥ θ′1 (v (y, ŷ1)− v (y′, ŷ1)), i.e., x′1 + θ′1v (y′, ŷ1) > x1 + θ′1v (y, ŷ1).

Suppose v (y, ŷ1) − v (y′, ŷ1) > 0. Then θ1 (v (y, ŷ1)− v (y′, ŷ1)) > θ′1 (v (y, ŷ1)− v (y′, ŷ1))

for θ1 > θ′1 and hence x′1− x1 > θ′1 (v (y, ŷ1)− v (y′, ŷ1)), i.e., x′1 + θ′1v (y′, ŷ1) > x1 + θ′1v (y, ŷ1).

(ii) Since type θ1 weakly prefers z′′ to z, we have x′′1 + θ1v (y′′, ŷ1) ≥ x1 + θ1v (y, ŷ1), which

implies that θ1 (v (y′′, ŷ1)− v (y, ŷ1)) ≥ x1−x′′1. Since x1−x′′1 > 0, we have v (y′′, ŷ1)−v (y, ŷ1) >

0. So, for θ′′1 > θ1, we have θ′′1 (v (y′′, ŷ1)− v (y, ŷ1)) > θ1 (v (y′′, ŷ1)− v (y, ŷ1)) ≥ x1 − x′′1, i.e.,

x′′1 + θ′′1v (y′′, ŷ1) > x1 + θ′′1v (y, ŷ1).

Proof of Lemma 2. Let (µ, γ, π) be an equilibrium in Γ1 in which z′ and z′′ are elicited where

x′1 > 0 and x′′1 > 0. Let α (z) = {θ1 : π(µ1 (θ1)) = z and γ1 (z, θ1) = 1}. Since any proposal

elicited in an equilibrium is accepted by some type who elicits it (page 2), α (z′) and α (z′′) are

nonempty. Let θ′1 = supα (z′) and θ′′1 = supα (z′′).

Let o (θ1) = π(µ1 (θ1)) if γ1 (µ1 (θ1) , θ1) = 1 and o (θ1) = s otherwise. Also, let ue1 (θ1) =

u1 (o (θ1) , θ1). That is, o (θ1) is type θ1’s outcome and ue1 (θ1) is type θ1’s payoff in (µ, γ, π).

Claim 1. ue1 (θ′1) = u1 (z′, θ′1) = u1 (s, θ′1) and ue1 (θ′′1) = u1 (z′′, θ′′1) = u1 (s, θ′′1).

Proof. We show that ue1 (θ′1) = u1 (z′, θ′1) = u1 (s, θ′1). A similar argument shows ue1 (θ′′1) =

u1 (z′′, θ′′1) = u1 (s, θ′′1).

To show that ue1 (θ′1) = u1 (z′, θ′1), first note that ue1 (θ′1) ≥ u1 (z′, θ′1) since type θ′1 can elicit

z′ and accept it. Suppose ue1 (θ′1) > u1 (z′, θ′1). Note that for any ε > 0, there exists type
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θ1 ∈ α (z′) such that θ′1 − θ1 < ε. Since u1 (o (θ′1) , θ1) − u1 (z′, θ1) is continuous in θ1, there

must exist type θ1 ∈ α (z′) suffciently close to θ′1 such that u1 (o (θ′1) , θ1) > u1 (z′, θ1). Since for

any θ1 ∈ α (z′), ue1 (θ1) = u1 (z′, θ1), this is a contradiction. Hence ue1 (θ′1) = u1 (z′, θ′1).

To show that ue1 (θ′1) = u1 (s, θ′1), first note that for any θ1, ue1 (θ1) ≥ u1 (s, θ1) since type

θ1 can reject the proposal it elicits, resulting in s. Suppose ue1 (θ′1) > u1 (s, θ′1). Since ue1 (θ′1) =

u1 (z′, θ′1), we have u1 (z′, θ′1) > u1 (s, θ′1). Since x′1 > 0, there exists proposal z̃ where ỹ = y′

and 0 < x̃1 < x′1 such that u1 (z̃, θ′1) > u1 (s, θ′1). Lemma 1 implies that for any θ1 ∈ α (z′),

u1 (z̃, θ1) > u1 (s, θ1) and therefore γ1 (z̃, θ1) = 1 for any θ1 ∈ α (z′). It follows that for any

message sent by θ1 ∈ α (z′), the chair is strictly better off by proposing z̃ than by proposing z′,

a contradiction. Hence, ue1 (θ′1) = u1 (s, θ′1).

Suppose z′ 6= z′′. Consider the following two possibilities. (a) Suppose x′1 = x′′1 and

y′ 6= y′′. Without loss of generality, suppose y′ < y′′. Since both z′ and z′′ are elicited in

equilibrium, we have y′ < y′′ ≤ e (ŷ1) ≤ ŷ1. Since x′1 = x′′1 and u1 (z, θ1) is increasing in y

for y < ŷ1, we have u1 (z′, θ1) < u1 (z′′, θ1) for all θ1 ∈ Θ1, contradicting that z′′ is elicited

in equilibrium. (b) Suppose x′1 6= x′′1 and without loss of generality, assume x′1 > x′′1 > 0.

Note that for any θ1 ∈ α (z′), ue1 (θ1) = u1 (z′, θ1) ≥ u1 (z′′, θ1) and for any θ1 ∈ α (z′′),

ue1 (θ1) = u1 (z′′, θ1) ≥ u1 (z′, θ1). It follows from Lemma 1 that any θ1 ∈ α (z′) is lower than any

θ1 ∈ α (z′′). Hence θ′1 < θ′′1 . Since u1(z′′, θ′′1) = u1 (s, θ′′1), by Lemma 1, u1(z′′, θ′1) > u1 (s, θ′1),

contradicting ue1 (θ′1) = u1 (s, θ′1). Hence z′ = z′′.

Proof of Proposition 2. Define τ (z, θ′1, θ
′′
1) = max{θ1 ∈ [θ′1, θ

′′
1 ] : u1 (z, θ1) ≥ u1 (s, θ1)} if

u1 (z, θ′1) ≥ u1 (s, θ′1) and τ (z, θ′1, θ
′′
1) = θ′1 if u1 (z, θ′1) < u1 (s, θ′1). Let k (θ′1, θ

′′
1) be the set

of proposals that are optimal for the chair if she knows that θ1 ∈ [θ′1, θ
′′
1 ], i.e.,

k
(
θ′1, θ

′′
1

)
= arg max

z
u0 (z)

(
F1

(
τ
(
z, θ′1, θ

′′
1

))
− F1

(
θ′1
))

+ u0 (s) [F1

(
θ′′1
)
− F1

(
τ
(
z, θ′1, θ

′′
1

))
].

Let k (θ1, θ1) = z1 (θ1). We first establish the following claim.

Claim 2. Let l′1, l
′′
1 , h
′
1, h
′′
1 ∈ Θ1 be such that l′1 < l′′1 , h′1 < h′′1, l′1 ≤ h′1 and l′′1 ≤ h′′1. (i) If

z̆ ∈ k (l′1, l
′′
1), then z̆ ∈ k (h′1, h

′′
1). (ii) If k (h′1, h

′′
1) 6= {z̆}, then k (l′1, l

′′
1) 6= {z̆}.

Proof. For any z ∈ Y ×X, let p(z) = (F1 (τ (z, h′1, h
′′
1))− F1 (h′1)) / (F1 (h′′1)− F1 (h′1)) and let

q(z) = (F1 (τ (z, l′1, l
′′
1))− F1 (l′1)) / (F1 (l′′1)− F1 (l′1)). Note that q (z̆) = p (z̆) = 1. We first

show that q (z) ≥ p (z) for any z. If τ (z, l′1, l
′′
1) = l′′1 , then q(z) = 1 ≥ p (z). If τ (z, h′1, h

′′
1) = h′1
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then p(z) = 0 ≤ q (z). If τ (z, l′1, l
′′
1) < l′′1 and τ (z, h′1, h

′′
1) > h′1, then by Lemma 1, we have

τ (z, l′1, l
′′
1) = τ (z, h′1, h

′′
1) and again q (z) ≥ p (z).

Part (i): Since z̆ ∈ k (l′1, l
′′
1), we have u0 (z̆) ≥ u0 (z) q(z) + u0 (s) (1− q(z)) for any z ∈

Y ×X. Since q (z) ≥ p (z), for any z such that u0 (z) ≥ u0 (s), we have u0 (z̆) ≥ u0 (z) p(z) +

u0 (s) (1− p(z)), which implies that z̆ ∈ k (h′1, h
′′
1).

Part (ii): If k (h′1, h
′′
1) 6= {z̆}, then there exists z 6= z̆ such that u0 (z) p(z)+u0 (s) (1− p(z)) ≥

u0 (z̆). Since q (z) ≥ p (z), we have u0 (z) q(z) + u0 (s) (1− q(z)) ≥ u0 (z̆) and therefore

k (l′1, l
′′
1) 6= {z̆}.

Let t′1 = sup{θ1 ∈ [θ1, θ̄1] such that k (θ1, θ1) 6= {z̆}} and t′′1 = inf{θ1 ∈ [θ1, θ̄1] such that

z̆ ∈ k
(
θ1, θ̄1

)
}. Under conditions (i) and (ii) in Proposition 2, t′1 and t′′1 are well defined. We

next show that t′1 ≤ t′′1. Suppose to the contrary t′1 > t′′1. Then there exists θ1 ∈ (t′′1, t
′
1) such

that k (θ1, θ1) = {z̆} and z̆ /∈ k
(
θ1, θ̄1

)
, contradicting Claim 2. Hence t′1 ≤ t′′1. Fix θ̃1 ∈ [t′1, t

′′
1]

and let µ1 (θ1) = m1
1 if θ1 ≤ θ̃1 and µ1 (θ1) = m2

1 if θ1 > θ̃1, π
(
m1

1

)
∈ k(θ1, θ̃1) such that

π
(
m1

1

)
6= z̆, π

(
m2

1

)
= z̆, π (m1) ∈ {π

(
m1

1), π
(
m2

1

))
} for any other m1 ∈ M1. Also, let γ1

satisfy (E1). Since this is an equilibrium profile, a size-two equilibrium exists.

Proof of Lemma 3. Fix a monotone equilibrium (µ, γ, π) and a message profile m sent in this

equilibrium. Let G denote the posterior of the chair when receiving m and g denote the

associated density. We show below that π(m1,m2) = (y∗;x∗) is not a two-transfer proposal.

Case (i): Suppose µ−1
i (mi) is a singleton for at least one legislator i. Without loss of

generality, suppose µ−1
1 (m1) is a singleton, and let θ1 = µ−1

1 (m1). Suppose to the contrary that

x∗1 > 0 and x∗2 > 0. If u1(π(m1,m2), θ1) ≥ u1(s, θ1), then type θ1 accepts π(m1,m2), and the

chair is strictly better off by proposing z′ = (y∗;x∗1, 0), a contradiction. If u1(π(m1,m2), θ1) <

u1(s, θ1), then type θ1 rejects π(m1,m2), and the chair is strictly better off by proposing z′ =

(y′;x′) where y′ = y∗, x′1 = 0 and x′2 = x∗2, a contradiction.

Case (ii): Suppose µ−1
i (mi) is a proper interval for i = 1, 2. Recall that for any proposal z,

t1(z) denotes the highest type who is willing to accept z. Likewise, t2(z) is defined analogously.

Then the probability that z passes is β (z) = 1 − (1−G1 (t1(z))) (1−G2 (t2 (z))). For any

d > 0, consider the following problem

zd ∈ arg max
z∈Y×X

(c− d+ θ0v(y, ŷ0))β(z) + θ0v(ỹ, ŷ0) (1− β(z))

subject to x1 +x2 = d. That is, zd = (yd;xd) is an optimal proposal for the chair when receiving

m, subject to x1 + x2 = d. To show that π (m) is not a two-transfer proposal, it is sufficient to

28



show that for any d > 0, either xd1 = 0 or xd2 = 0.

Fix d > 0 and suppose to the contrary that xd1 > 0 and xd2 > 0. Let vdi = v(ỹ, ŷi)− v(yd, ŷi).

Since xdi > 0, it must be the case that vdi > 0. Also Gi
(
ti(z

d)
)
∈ (0, 1). This is because, if

Gi
(
ti(z

d)
)

= 0, then xdi = 0; and if Gi
(
ti(z

d)
)

= 1, then xdj = 0. In the rest of the proof,

abusing notation, we let Gi = Gi
(
ti(z

d)
)

and gi = gi
(
ti(z

d)
)
.

Substituting x2 with (d− x1) in the maximization problem, first order necessary conditions

for an interior maximum requires:(
θ0v(yd, ŷ0)− θ0v(ỹ, ŷ0)

) ∂β(zd)

∂x1
= 0. (2)

Since d > 0, we have v(yd, ŷ0)−v(ỹ, ŷ0) > 0, and therefore ∂β(zd)/∂x1 = 0. Since ∂β(zd)/∂x1 =

g1(1 − G2)/vd1 − g2(1 − G1)/vd2 and Gi ∈ (0, 1), we can rearrange (2) to obtain v1
d = g1(1 −

G2)v2
d/(g2(1−G1)). The second order necessary condition for an interior maximum requires that

∂2β(zd)/∂x2
1 ≤ 0. Substituting for vd1 , direct calculation shows that the second order condition

requires that,

(
g2

g1
)2
(
g′1 (1−G1) + (g1)2

)
+ (g′2 (1−G2) + (g2)2) ≤ 0. (3)

By Corollary 5 in Bagnoli and Bergstrom (2005), a truncation of a distribution preserves

the property of increasing hazard rate. Since Fi satisfies increasing hazard rate property, it

follows that Gi satisfy the increasing hazard rate property, which implies that g′i(ti(z
d))(1 −

Gi(ti(z
d)) + gi(ti(z

d))2 > 0 for i = 1, 2. But this violates equation (3), a contradiction. Hence,

for any d > 0, either xd1 = 0 or xd2 = 0.

Proof of Lemma 4. (i) Since x1 = x2 = 0 and e (ŷ1) ≤ ŷ1 ≤ ŷ2, it follows that if y < e (ŷ1),

neither legislator accepts z, and if y ≥ e (ŷ1), at least legislator 1 accepts z. Since ŷ0 < e (ŷ1) ≤

ỹ, v (y, ŷ0) reaches its maximum at y = ŷ0 and v11 < 0, it is optimal for the chair to propose

y = e (ŷ1). (ii) Since x1 = 0 and y = e (ŷ1), we have u1 (z, θ1) = u1 (s, θ1) for any θ1. (iii)

Similarly, if e (ŷ1) = e (ŷ2), we have u2 (z, θ2) = u2 (s, θ2) for any θ2. (iv) If e (ŷ1) < e (ŷ2) ≤ ŷ2,

however, we have u2 (z, θ2) < u2 (s, θ2) for any θ2 and hence legislator 1 is pivotal.

Proof of Lemma 5. Suppose to the contrary that there exists type θ′j who prefers z = (y;x) to

s, i.e., uj(z, θ
′
j) ≥ uj(s, θ

′
j). Since xj = 0, this implies that v (y, ŷj) ≥ v (ỹ, ŷj) and therefore

uj(z, θj) ≥ uj(s, θj) for any θj ∈ Θj . Consider z′ = (y′;x′) with y′ = y, x′i = x′j = 0. We have

uj(z
′, θj) ≥ uj(s, θj) for any θj ∈ Θj and therefore every type of legislator j accepts z. Since
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x′i < xi, we have u0(z′) > u0(z), which implies that z is not a best response for the chair, a

contradiction. So every type of legislator j rejects z and legislator i is pivotal.

Proof of Proposition 3. We first state and prove the following lemma.

Lemma 6. Fix a simple monotone equilibrium (µ, γ, π). Let θ′i < θ′′i , m′i = µi (θ′i), and

m′′i = µi (θ′′i ). Suppose qi (m′′i ) > 0. (i) If µ−1
i (m′′i ) is not a singleton, then m′i = m′′i . (ii) If

µ−1
i (m′′i ) is a singleton, then µ−1

i (m′i) is not a singleton.

Proof. We prove the lemma for i = 1 and discuss how to modify the proof for i = 2 at the end.

Part (i): Suppose to the contrary that m′1 6= m′′1. We first prove the following claim: for

any m2 sent by some θ2 ∈ Θ2, if π (m′′1,m2) includes 1 then π (m′1,m2) also includes 1. This

claim implies that q1(m′1) ≥ q1(m′′1). We then use this inequality to establish a contradiction.

Proof of the claim: Suppose π (m′′1,m2) = (y′′;x′′) includes 1. By Lemma 3, π (m′′1,m2)

excludes 2. Since µ−1
1 (m′′1) is not a singleton, it must be a proper interval. By Lemma 5,

legislator 1 is pivotal with respect to π (m′′1,m2). Since any proposal elicited in equilibrium

is accepted with positive probability, π (m′′1,m2) is accepted by a positive measure of θ1 ∈

µ−1
1 (m′′1), i.e., P1

(
θ1 ∈ µ−1

1 (m′′1)|u1 (π(m′′1,m2), θ1) ≥ u1(s, θ1)
)
> 0. By Lemma 1, for any θ1

and θ̃1 such that θ̃1 < θ1, if u1 (π (m′′1,m2) , θ1) ≥ u1 (s, θ1), then u1(π (m′′1,m2) , θ̃1) > u1(s, θ̃1).

Hence P1

(
θ1 ∈ µ−1

1 (m′′1)|u1 (π(m′′1,m2), θ1) > u1(s, θ1)
)
> 0.

Given any ε > 0, let zε = (y′′;x′′0 + ε, x′′1 − ε, 0). Since x′′1 > 0, and u1 is continuous in

x1, it follows that P1

(
θ1 ∈ µ−1

1 (m′′1)|u1(zε, θ1) > u1(s, θ1)
)
> 0 for ε sufficiently small. Hence

u1 (zε, θ1) > u1 (s, θ1) for θ1 = inf{µ−1
1 (m′′1)}.

Since θ′1 < θ′′1 and µ1 is part of a monotone equilibrium, m′1 6= m′′1 implies that sup{µ−1
1 (m′1)} ≤

inf{µ−1
1 (m′′1)}. By Lemma 1, u1 (zε, θ1) > u1 (s, θ1) for any θ1 ∈ µ−1

1 (m′1). Since u0 (zε) >

u0 (π (m′′1,m2)) and zε is accepted by all θ1 ∈ µ−1
1 (m′1), we have U−2

0 (H1(m′1)) > U−2
0 (H1(m′′1)).

Since π (m′′1,m2) includes 1, we have U−2
0 (H1 (m′′1)) ≥ U−1

0 (H2 (m2)). Hence U−2
0 (H1(m′1)) >

U−2
0 (H1(m′′1)) ≥ U−1

0 (H2 (m2)) and therefore π (m′1,m2) includes 1 as well. This completes

the proof of the claim.

The claim implies that q1 (m′1) ≥ q1 (m′′1), and Θ2 = Θa
2∪Θb

2∪Θc
2∪Θd

2 where Θa
2 = {θ2 ∈ Θ2 :

both π (m′1, µ2 (θ2)) and π (m′′1, µ2 (θ2)) exclude 1}; Θb
2 = {θ2 ∈ Θ2 : π (m′1, µ2 (θ2)) includes 1

and π (m′′1, µ2 (θ2)) includes 2 }, Θc
2 = {θ2 ∈ Θ2 : π (m′1, µ2 (θ2)) includes 1 and π (m′′1, µ2 (θ2))

excludes both 1 and 2}, Θd
2 = {θ2 ∈ Θ2 : both π (m′1, µ2 (θ2)) and π (m′′1, µ2 (θ2)) include 1}.

By the claim above, Θd
2 = {θ2 ∈ Θ2 : π (m′′1, µ2 (θ2)) include 1}, and P2(Θd

2) = q1(m′′1) > 0.
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Let θ∗1 = supµ−1
1 (m′1) and θ∗∗1 = supµ−1

1 (m′′1). In what follows we show that either θ∗1

or θ∗∗1 has a profitable deviation. Note that θ∗∗1 > θ∗1 since m′1 6= m′′1 and µ−1
1 (m′′1) is not a

singleton. Further note that if π (m′1, µ2 (θ2)) includes legislator 1, then type θ∗1 weakly prefers

s to π (m′1, µ2 (θ2)). To see this, let π (m′1, µ2 (θ2)) = z′ = (y′;x′) and suppose to the contrary

that u1 (z′, θ∗1) > u1 (s, θ∗1). Since x′1 > 0, there exists ε > 0 and z̃ = (y′;x0 + ε, x1 − ε, 0) such

that u1 (z̃, θ∗1) > u1 (s, θ∗1). Since θ1 ≤ θ∗1 for any θ1 ∈ µ−1
1 (m′1), by Lemma 1, z̃ is accepted

with probability 1 in response to (m′1, µ2 (θ2)), contradicting the optimality of π (m′1, µ2 (θ2)).

Hence type θ∗1 weakly prefers s to π (m′1, µ2 (θ2)). Since θ∗∗1 > θ∗1, type θ∗∗1 strictly prefers s to

π (m′1, µ2 (θ2)) by Lemma 1. Similarly, if π (m′′1, µ2 (θ2)) includes legislator 1, then there exists

a type θ1 > θ∗1 who is indifferent between π (m′′1, µ2 (θ2)) and s. Therefore θ∗1 strictly prefers

π (m′′1, µ2 (θ2)) to s by Lemma 1.

Fix the strategies of the chair and legislator 2, and consider legislator 1’s payoff from sending

m′1 and m′′1 followed by his optimal acceptance rule. In an SME, π (m′1, µ2 (θ2)) = π (m′′1, µ2 (θ2))

for any θ2 ∈ Θa
2. So conditional on θ2 ∈ Θa

2, legislator 1 is indifferent between sending m′1 and

m′′1 regardless of his type. By Lemma 5, legislator 1 is strictly better off when the proposal

includes him than when the proposal includes the other legislator. So conditional on θ2 ∈ Θb
2,

legislator 1 is strictly better off sending m′1 than sending m′′1 regardless of his type. By the

discussion in the previous paragraph, conditional on θ2 ∈ Θc
2, both θ∗1 and θ∗∗1 get their status

quo payoffs by sending m′1 (followed by their optimal acceptance rule). By Lemma 4, sending

m′′1 yields legislator 1 his status quo payoff conditional on θ2 ∈ Θc
2. So both θ∗1 and θ∗∗1 are

indifferent between sending m′1 and m′′1 if θ2 ∈ Θc
2. Lastly, conditional on θ2 ∈ Θd

2, type θ∗1 is

strictly better off sending m′′1, while type θ∗∗1 gets his status quo payoff when sending either m′1

(followed by optimally rejecting π (m′1, µ2 (θ2))) or m′′1.

If P2

(
Θb

2

)
> 0, then type θ∗∗1 receives a strictly higher payoff by deviating and sending m′1,

a contradiction. If P2

(
Θb

2

)
= 0, then, since P2(Θd

2) > 0, type θ∗1 receives a strictly higher payoff

by deviating and sending m′′1, a contradiction. Hence m′′1 = m′1.

If i = 2 and e(ŷ1) = e(ŷ2), then the proof is identical. If e(ŷ1) < e(ŷ2), then the proof is

identical except when P1

(
Θb

1

)
= 0. (Θb

1 and all other sets are defined analogously.) This is

because conditional on θ1 ∈ Θc
1, any type of legislator 2 strictly prefers sending m′2 to sending

m′′2. In this case, if P1(Θc
1) = P1(Θb

1) = 0, then, since P1(Θd
1) > 0, type θ∗2 receives a strictly

higher payoff by sending m′′2, a contradiction. If P1(Θb
1) = 0 and P1(Θc

1) > 0, then type θ∗∗2 has

an incentive to deviate and send m′2, a contradiction.
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Part (ii): Proof is similar that of Part (i). Suppose to the contrary that µ−1
i (m′i) is a

singleton. As in Part (i), suppose π(m′′1,m2) includes 1. Then, since µ−1
i (m′′1) is a singleton,

π(m′′1,m2) is accepted by θ′′1 , i.e. u1(π(m′′1,m2), θ′′1 ≥ u1(s, θ′′1). Since θ′1 < θ′′1 , by Lemma 1,

u1(π(m′′1,m2), θ′1) > u1(s, θ′1). Given any ε > 0, let zε = (y′′;x′′0 + ε, x′′1 − ε, 0). Since x′′1 > 0,

and u1 is continuous in x1, it follows that u1 (zε, θ
′
1) > u1 (s, θ′1). The rest of the proof is the

same as that of Part (i).

We next show that if Pi (qi (µi(θi)) = 0) = 0 or Pi (qi (µi(θi)) > 0) = 0, then legislator i is un-

informative in (µ, γ, π). Suppose Pi (qi (µi(θi)) = 0) = 0. Then, Pi (qi (µi(θi)) > 0) = 1, and by

Lemma 6, there exists m′i such that qi(m
′
i) > 0 and Pi(µi(θi) = m′i) = 1. Hence µi is equivalent

to the size-one message rule µIi (θi) = m′i for all θi. Next, suppose Pi (qi (µi(θi)) > 0) = 0. Then

Pi (qi (µi(θi)) = 0) = 1. Consider θ̂i such that q(µi(θ̂i)) = 0 and a size-one message rule µIi (θi)

such that µIi (θi) = µi(θ̂i) for all θi ∈ Θi. To see that µi is equivalent to µIi , consider any θi such

that qi (µi (θi)) = 0. Note that in an SME, for any mj , π(µi(θ̂i),mj) = π (µi (θi) ,mj) if both

π(µi(θ̂i),mj) and π (µi (θi) ,mj) exclude legislator i. Since qi(µi(θ̂i)) = qi (µi (θi)) = 0, it follows

that π(µi(θ̂i), µj (θj)) = π (µi (θi) , µj (θj)) for almost all θj . Since Pi (qi (µi(θi)) = 0) = 1, it

follows that µi is equivalent to µIi .

Hence, if legislator i is informative, then Pi (qi (µi(θi)) = 0) > 0 and Pi (qi (µi(θi)) > 0) > 0.

Again, by Lemma 6, there exists m′i and type θ∗i ∈
(
θi, θ̄i

)
such that qi(m

′
i) > 0 and µi(θi) = m′i

for all θi < θ∗i and qi(µi(θi)) = 0 for almost all θi ≥ θ∗i . Pick any θ̂i such that qi(µi(θ̂i)) = 0,

and let m̂i = µi(θ̂i). Then µi is equivalent to µIIi such that µIIi (θi) = m′i for θi < θ∗i and

µIIi (θi) = m̂i for θi > θ∗i .

Proof of Proposition 4. Proposition 3 implies that if legislator i is informative, then there ex-

ist m′i ∈ Mi such that qi (m′i) > 0, Pi(θi|µi(θi) = m′i) ∈ (0, 1) and Pi(θi|µi(θi) = m′i) +

Pi(θi|qi(µi(θi)) = 0) = 1. Let Θ∗i = {θi ∈ Θi : qi(µi(θi)) = 0}.

To prove part (i), suppose to the contrary that both legislators 1 and 2 are informative in

(µ, γ, π), and consider the following two cases.

(a) Suppose π (m′1,m
′
2) excludes 1. Consider any m̃1 ∈ M1 such that q1(m̃1) = 0. Since

P2(θ2 ∈ Θ2|µ2(θ2) = m′2) > 0, π(m̃1,m
′
2) excludes 1. Thus, in an SME, π(m′1,m

′
2) = π(m̃1,m

′
2).

Note that this is true for any m̃1 with q1(m̃1) = 0. Since q2(m′2) > 0 and P1(θ1|µ1(θ1) =

m′1) + P1(θ1|q1(µ1(θ1)) = 0) = 1, we have q2(m′2) = 1.

Since P1(θ1|µ1(θ1) = m′1) > 0, we have π(m′1, µ2(θ2)) excludes 2 for all θ2 ∈ Θ∗2, and
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therefore π(m′1, µ2(θ2)) is the same for all θ2 ∈ Θ∗2. Since π(m′1,m
′
2) excludes 1 and q1(m′1) > 0,

we have P2(θ2|θ2 ∈ Θ∗2 and π(m′1, µ2(θ2)) includes 1) > 0. Hence π(m′1, µ2(θ2)) includes 1 for

any θ2 ∈ Θ∗2. Consider the payoff of type θ2 ∈ Θ∗2 by sending m′2 and µ2(θ2). Lemma 4 and

Lemma 5 imply that if legislator 2 is included, his payoff is weakly higher than u2 (s, θ2) and

if he is excluded, his payoff is weakly lower than u2 (s, θ2). Since q2 (m′2) = 1, by sending m′2,

type θ2’s expected payoff is weakly higher than u2 (s, θ2). Since π (m′1, µ2(θ2)) includes 1 and

P1(θ1|µ1(θ1) = m′1) > 0, by Lemma 5, the expected payoff type θ2 by sending µ2(θ2) is strictly

lower than u2 (s, θ2), and hence he has an incentive to deviate and send m′2, a contradiction.

(b) Suppose π (m′1,m
′
2) includes 1. Then the same arguments as in case (a) show that

q1 (m′1) = 1 and any θ1 ∈ Θ∗1 is strictly better off by sending m′1 than µ1(θ1), a contradiction.

To prove part (ii), suppose to the contrary that legislator 2 is informative. Consider the pay-

off of type θ2 ∈ Θ∗2 by sending m′2 and µ2(θ2). Pick any m1. If both π(m1,m
′
2) and π(m1, µ2(θ2))

exclude 2, then π(m1,m
′
2) = π(m1, µ2(θ2)) and type θ2 gets the same payoff by sending m′2 and

µ2(θ2). If π(m1,m
′
2) includes 2 and π(m1, µ2(θ2)) excludes 2, then by Lemma 5, legislator 2 is

pivotal with respect to π(m1,m
′
2) and gets a payoff weakly higher than u2 (s, θ2). Since e(ŷ1) <

e(ŷ2), by Lemmas 4 and 5, u2(π(m1, µ2(θ2)) < u2 (s, θ2). Since q2 (m′2) > 0 and q2 (µ2(θ2)) = 0,

we have q2(m′2) = P1 (θ1|π (µ1 (θ1) ,m′2) includes 2, π (µ1 (θ1) , µ2(θ2)) excludes 2) > 0. Hence

any type θ2 ∈ Θ∗2 is strictly better off by sending m′2 than by sending µ2(θ2), a contradiction.

Supplementary Appendix

Lemma 7. Suppose v (y, ŷi) = − (y − ŷi)2, c > 0 and θ1 is uniformly distributed on [t1, t̄1] ⊆

Θ1, where t̄1 > t1. Let G1 be the cumulative distribution function of θ1 and let W (θ1) =

V (θ1)G1 (θ1) + u0 (s) (1−G1 (θ1)) .

(i) If ŷ1 ≤ ỹ, then t̄1 = arg maxθ1∈[t1,t̄1]W (θ1).

(ii) If ŷ1 > ỹ, then the solution to maxθ1∈[t1,t̄1]W (θ1) is generically unique.

Proof. Without loss of generality, let ỹ = 0. Recall that z1 (θ1) =
(
y1 (θ1) ;x1 (θ1)

)
denotes the

chair’s optimal proposal under complete information when she faces legislator 1 only. When

v (y, ŷi) = − (y − ŷi)2, it is straightforward to show that y1 (θ1) = min{(θ0ŷ0 + θ1ŷ1)/(θ0 +

θ1), e (ŷ1)} and x1
1 (θ1) = max{θ1

(
v(ỹ, ŷ1)− v(y1 (θ1) , ŷ1)

)
, 0}. Hence, if (θ0ŷ0 + θ1ŷ1)/(θ0 +
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θ1) > e(ŷ1), then V (θ1) = c− θ0(e(ŷ1)− ŷ0)2, and V ′ (θ1) = 0; and if (θ0ŷ0 + θ1ŷ1)/(θ0 + θ1) ≤

e (ŷ1), then

V (θ1) = c− θ1(−θ0ŷ0 + θ1ŷ1

θ0 + θ1
)(2ŷ1 −

θ0ŷ0 + θ1ŷ1

θ0 + θ1
)− θ0(

θ0ŷ0 + θ1ŷ1

θ0 + θ1
− ŷ0)2.

In this case V ′ (θ1) < 0. This follows because

V ′ (θ1) = −
(
v(ỹ, ŷ1)− v(y1(θ1), ŷ1)

)
< − (v(ỹ, ŷ1)− v(e(ŷ1), ŷ1)) = 0.

Here the first equality is by the envelope theorem, and the inequality is true because v(y1(θ1), ŷ1) <

v(e(ŷ1), ŷ1), and the second equality follows from the definition of e(ŷ1).

Note that

W ′ (θ1) =
V ′ (θ1) θ1 − V ′ (θ1) t1 + V (θ1)− u0 (s)

t̄1 − t1
.

Part (i): Suppose ŷ1 ≤ ỹ. It suffices to show that W ′ (θ1) > 0 for all θ1 ∈ [t1, t̄1].

Since V ′ (θ1) ≤ 0, to show that W ′ (θ1) > 0, we only need to show that V ′ (θ1) θ1 +V (θ1)−

u0 (s) > 0. If (θ0ŷ0+θ1ŷ1)/(θ0+θ1) > e (ŷ1), then V ′ (θ1) θ1+V (θ1)−u0 (s) > 0 since V ′ (θ1) = 0

and V (θ1) − u0 (s) > 0. Hence t̄1 = arg maxW (θ1). If (θ0ŷ0 + θ1ŷ1)/(θ0 + θ1) ≤ e (ŷ1), then

y1(θ1) = (θ0ŷ0 + θ1ŷ1)/(θ0 + θ1) ≤ e (ŷ1) and

V ′ (θ1) θ1 + V (θ1)− u0 (s) = c+ θ0y
1(θ1)2 + 2θ1y

1(θ1)ŷ1.

Since c > 0, θ0 > 0, θ1 > 0, and y1(θ1) ≤ e(ŷ1) ≤ ŷ1 ≤ ỹ = 0 it follows that V ′ (θ1) θ1 +

V (θ1)− u0 (s) > 0 and therefore W ′(θ1) > 0.

Part (ii): Suppose ŷ1 > ỹ. Since c > 0, if V ′(θ1) = 0, then W ′(θ1) > 0, and therefore if

θ1 6= t̄1, then θ1 6= arg maxW (θ1). We next show that for θ1 such that V ′(θ1) < 0, the second

derivative of W (θ1) crosses 0 only once, from below, which implies that there is at most one

interior maximum. It is straightforward to verify that

W ′′ (θ1) =
V ′′ (θ1) (θ1 − t1) + 2V ′ (θ1)

t̄1 − t1

=
2
(
θ1ŷ

2
1

(
3θ0θ1 + 3θ2

0 + θ2
1

)
+ C

)
(θ0 + θ1)3 (t̄1 − t1)

where C does not depend on θ1. Hence, if W ′′ (θ1) > 0, then W ′′ (θ′1) > 0 for any θ′1 > θ1, i.e.,

W ′′ (θ1) crosses 0 at most once and from below. Consider the following two possibilities.

(a) Suppose W ′′ (θ1) > 0 for all θ1 ∈ [t1, t̄1] such that V ′(θ1) < 0. Then W (θ1) does not

have an interior maximum, and therefore t̄1 = arg maxW (θ1).
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(b) Suppose W ′′ (θ1) = 0 for some θ1 ∈ [t1, t̄1] such that V ′(θ1) < 0. Then there is at

most one interior maximum of W (θ1) at θ̃1 where W ′(θ̃1) = 0 and W ′′(θ̃1) < 0. Unless

W (θ̃1) = W (t̄1), which happens only non-generically, W (θ1) has a unique maximum either

at θ̃1 or at t̄1.
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