Home > Faculty > David W. Wright
David W. Wright
Title and Contact Information
Professor of Chemistry
Office: 7860 SC
Phone: (615) 322-2636
Email • Website
Education
Ph.D., Massachusetts Institute of Technology, 1994
Specialties
VINSE
VICB
Nanomaterials Chemistry
Mass Spectrometry
Materials Chemistry
Inorganic Chemistry
Chemical Biology
Bioinorganic Chemistry
Biochemistry
Bioanalytical Chemistry
In the News
Vanderbilt News-Vanderbilt University receives $100,000 Grand Challenges Explorations Grant for Innovative Global Health Research
Kavli Fellow for 2011
-
Kavli/National Academy of Sciences Frontiers in Science Symposia
Research News @ Vanderbilt-David Wright (Chemistry) with Rick Haselton (Biomedical Engineering) and Ray Mernaugh (Biochemistry) supproted by the Bill and Melinda Gates Foundation to develop low resource diagnostics for the developing world
Arts and Science-
Nothing to Sneeze At
Research
Bioinorganic and Biomaterials Chemistry
Biomineralization results in an expansive array of complex materials ranging from laminate composites and ceramics such as bones, teeth, and shells to magnetic materials such as the forms of magnetite found in magnetobacteria. It also produces non-linear optical materials, such as the unique peptide-coated cadmium sulfide particles which result from heavy metal detoxification mechanisms within some yeast and plants. These natural biominerals often represent unique crystal forms extending over several size domains that are synthesized in aqueous solutions at room temperature and standard pressure. Additionally, many of these crystal forms, and their associated properties, cannot be readily produced in the laboratory! Biomineralization processes also play important roles in the pathologies of a number of diseases including osteoporosis and malaria. Understanding these processes is leading to novel discoveries ranging from new materials to new therapeutic advances for the treatment of disease.
The primary focus of research in our group is the design, synthesis and characterization of organic templates capable of mediating the growth of biological important biominerals. Specific studies underway in our labs include:
- Mechanistic and structural studies of the scaffold biopolymers that nucleate the critical detoxification mineral hemozoin within the digestive vacuole of the malaria parasite, Plasmodium falciparum.
- Role of hemozoin in the modulation of host innate immune system response. Reactivity studies between hemozoin and fatty acid substrates indicate a wide distribution of highly immunomodulatory products including hydroxylated fatty acids, isoprostanes and prostaglandinds.
- The use of combinatorial chemistry to understand the role of matrix peptides in the formations of monodisperse biogenic nanocrystals. These studies will yield functionalized building blocks for the construction of novel nanodevices
- Diatoms form diverse nanopatterned silica structures. In contrast to many current materials approaches to the synthesis of patterned silica, biogenic silica is formed rapidly under mild conditions mediated by a highly post-translationally modified peptide. We are taking a wide variety of approaches in not only understanding the function of such peptides, but also in applying our methods to the design of new functionalized SiO2 materials.