School of Engineering

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Education in a University Setting</td>
<td>274</td>
</tr>
<tr>
<td>Degree Programs in Engineering</td>
<td>276</td>
</tr>
<tr>
<td>Special Programs</td>
<td>278</td>
</tr>
<tr>
<td>Honors</td>
<td>280</td>
</tr>
<tr>
<td>Academic Regulations</td>
<td>282</td>
</tr>
<tr>
<td>Courses of Study</td>
<td>287</td>
</tr>
<tr>
<td>Engineering Courses</td>
<td>311</td>
</tr>
<tr>
<td>Administration and Faculty</td>
<td>336</td>
</tr>
</tbody>
</table>
Engineering Education in a University Setting

VANDERBILT University School of Engineering is the largest and oldest private engineering school in the South. Classes offering engineering instruction began in 1879, and seven years later Engineering was made a separate department with its own dean. The school’s program emphasizes the relationship of the engineering profession to society and prepares engineers to be socially aware as well as technically competent.

The mission of the School of Engineering is threefold: to prepare undergraduate and graduate students for roles that contribute to society; to conduct research to advance the state of knowledge and technology and to disseminate these advances through archival publications, conference publications, and technology transfer; and to provide professional services to the community.

The school strives to meet the undergraduate education portion of its mission by offering degree programs in fields of engineering relevant to the needs of society. An objective of these programs is to provide a technical education integrated with strong humanities, fine arts, and social sciences subject matter to provide the requisite foundation for life-long learning. The availability of second majors and minors in subject areas in other schools and colleges of the university increases opportunities for engineering students to enhance their education by pursuing studies in the non-technical disciplines. Engineering students take close to 50 percent of their courses outside of the School of Engineering and associate daily with peers from other schools and colleges within the university.

Another objective is to accommodate students who will continue their studies at the graduate level in engineering or in other professional fields, as well as those who intend to enter engineering practice upon graduation. To this end, our programs emphasize mathematics and engineering sciences, yet provide significant exposure to engineering design and hands-on laboratory experiences.

A large fraction of the student body is destined for management positions early in their working careers. To meet these students’ needs, the Engineering Management program offers a well-integrated curriculum, including a minor. In addition, a joint program with the Owen Graduate School of Management is available.

The bachelor of engineering serves those programs in engineering where professional registration through state boards is desirable or necessary. Typically, about 90 percent of the students are enrolled in programs that are accredited by the Engineering Accreditation Commission or the Computing Accreditation Commission of ABET (abet.org).

Facilities
The School of Engineering is housed in four buildings on campus. William W. Featheringill Hall provides a focal point for the School, housing a three-story atrium designed for student interaction and social events, more than fifty teaching and research laboratories with the latest equipment and computer resources, and project rooms. School administrative offices and several classrooms are located on the ground floor of the Science and Engineering Building in the Stevenson Center, which also houses the Biomedical Engineering Department on the eighth and ninth floors. Jacobs Hall, which flanks Featheringill Hall, contains laboratories, offices and classrooms serving both the Civil and Environmental Engineering Department and the Electrical Engineering and Computer Science Department. The Olin Hall of Engineering houses Chemical and Biomolecular Engineering, Mechanical Engineering, and Materials Science.

In all its engineering programs, Vanderbilt recognizes the valid place of experimental and research laboratories in the learning experience. Laboratories are planned to provide the strongest personal contact between students and faculty members consistent with enrollment.

Well-equipped undergraduate laboratories are maintained by the Departments of Chemistry and Physics in the College of Arts and Science, which offers mathematics and basic science courses required of all engineering students. Graduate and undergraduate divisions of these departments maintain teaching and research facilities in the Stevenson Center for the Natural Sciences, as does the Department of Earth and Environmental Sciences. Another supporting department, Biological Sciences, is housed in Medical Research Building III. Most classes in humanities and the social sciences are conducted in Buttrick, Calhoun, Furman, Garland, and Wilson halls.

Accreditation
All programs leading to the B.E. degree are accredited by the Engineering Accreditation Commission of ABET (abet.org). The bachelor of science program in computer science is accredited by the Computing Accreditation Commission of ABET (abet.org).

Employment of Graduates
Of the recent Vanderbilt graduates with baccalaureate degrees in engineering, about 70 percent entered directly into professional practice. Thirty percent continued with graduate or professional education or chose military service careers. Others pursued diverse careers or other interests. Additional information regarding the employment of engineering graduates is available in the Center for Student Professional Development.
Supporting Organizations

Vanderbilt Engineering Council

The Engineering Council is a student organization whose main goal is facilitating communication between administration, faculty, and students in the School of Engineering. Officers of the Engineering Council are elected by the engineering student body, and representatives from the professional societies complete the organization’s membership. While the council has no administrative power, it provides students with a voice in the decision-making process in the School of Engineering.

Professional Societies

The leading national engineering societies have chartered branches or student sections at Vanderbilt. These organizations are run locally by students with the help of a faculty adviser. Meetings are devoted to matters of a technical nature, including films, outside speakers, plant trips, and other subjects of interest to the membership.

Student speakers from the Vanderbilt groups compete annually with speakers from other groups in their region in technical paper competitions.

Freshmen and sophomores are cordially invited to attend meetings—and juniors and seniors are urged to join—as they will find the work of the professional societies beneficial in orienting them in their careers.

The student professional societies are:

- American Institute of Aeronautics and Astronautics (A.I.A.A.)
- American Institute of Chemical Engineers (A.I.Ch.E)
- American Society of Civil Engineers (A.S.C.E.)
- American Society of Mechanical Engineers (A.S.M.E.)
- American Society for Metals (A.S.M.)
- Association for Computing Machinery (A.C.M.)
- Institute of Electrical and Electronics Engineers (I.E.E.E.)
- International Society for Hybrid Microelectronics (I.S.H.M.)
- National Society of Black Engineers (N.S.B.E.)
- Society of Automotive Engineers (S.A.E.)
- Society of Hispanic Professional Engineers (S.H.P.E.)
- Society of Engineering Science (S.E.S.)
- Society of Women Engineers (S.W.E.)
- Vanderbilt Biomedical Engineering Society

Graduating seniors may join the Order of the Engineer, a society that recognizes the commitment of its members to the profession of engineering.
BACHELOR of engineering degree programs are offered in the areas of biomedical, chemical, civil, computer, electrical, and mechanical engineering. Many of these programs allow considerable flexibility—but students are required to include in their courses of study those bodies of knowledge fundamental to each discipline.

Bachelor of science degree programs offered in the interdisciplinary engineering disciplines often allow strong concentration in other areas of engineering or in the College of Arts and Science. The B.S. is awarded in the areas of computer science and engineering science.

The School offers the master of engineering (M.Eng.), with emphasis on engineering design and practice, in most areas of study. The Graduate School, through departments of the School of Engineering, offers the research-oriented Ph.D. degree in eight major fields. Degree programs offered by the School of Engineering are shown below.

Degree Programs

<table>
<thead>
<tr>
<th>Degree Programs</th>
<th>B.E.</th>
<th>B.S.</th>
<th>M.Eng.</th>
<th>M.S.</th>
<th>Ph.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Undergraduate Degrees

Bachelor of Engineering
The bachelor of engineering is offered in biomedical, chemical, civil, computer, electrical, and mechanical engineering. The B.E. degree requirements vary from 126 to 128 semester hours. Students seeking double majors will require somewhat more credit hours.

Bachelor of Science
The bachelor of science is offered in computer science and engineering science. Each major requires 120 semester hours. These programs have more flexibility in elective choice than the B.E. degree programs.

The First Year
Many courses normally scheduled for the freshman year are common to both the B.E. and B.S. degree programs. While the curriculum for the freshman year is generally the same for all students, there are important variations. For example, some major programs require a full year of introductory chemistry; others do not. Students should become familiar with requirements of those programs in which they have an interest and confer with their adviser at the time of enrollment and throughout the freshman year to work out a program of study that will keep options open as long as possible.

Specimen curricula for the engineering programs are given in the Courses of Study chapter. Requirements for the B.E. and B.S. degrees for the various programs vary in the minimum amount of work and specific course requirements in the basic sciences and in specific subject requirements in mathematics.

Included in the freshman year is the course Engineering Science 1401-1403 (Introduction to Engineering), which introduces the student to design tools used in all areas of engineering.

Some students may qualify for advanced placement or advanced credit in mathematics, science, the humanities and social sciences, or computer science. If advanced credit is awarded, it will not affect the student’s Vanderbilt grade point average.
Mathematics and Physics

Entering engineering students will be placed in the appropriate level mathematics course. Students offering one full year or more of high school credit in analytic geometry and calculus may qualify for advanced placement in a regular sequence by scoring well on the Advanced Placement Examination.

Students with high mathematical ability and achievement may apply for enrollment in the Math 2500-2501 sequence as a substitute for Math 2300. For more information, see the course descriptions under Mathematics in the Arts and Science section of this catalog. For majors requiring Math 2420 (Methods of Ordinary Differential Equations), students may select Math 2400 (Differential Equations with Linear Algebra) as a substitute.

Students with inadequate backgrounds in mathematics may be required to take Math 1005 (Pre-calculus Mathematics). Taking this course constitutes an additional requirement for graduation.

Math 1010-1011 (Probability and Statistical Inference) and Math 1100 (Survey of Calculus) cannot be credited toward a degree in the School of Engineering.

Pre-calculus physics courses 1110 and 1110L cannot be credited toward a degree in the School of Engineering.

Liberal Arts Core

In order to provide the elements of a general education considered necessary for responsible practice as an educated engineer, the School of Engineering requires each student to complete at least 18 hours in the Liberal Arts Core. The Liberal Arts Core will be selected from courses in the five distribution categories designated in the AXLE Curriculum Course Distribution of the College of Arts and Science:

- a) Humanities and the Creative Arts
- b) International Cultures, including Arabic 1101, Chinese 1011, 1012, 1101, French 1101, German 1101, Greek 1101, Hebrew 1101, Italian 1101, Japanese 1011, 1012, 1101, Latin 1101, Portuguese 1101, Russian 1101, and Spanish 1100, 1101
- c) History and Culture of the United States
- d) Social and Behavioral Sciences, including Engineering Management 2440
- e) Perspectives, including Computer Science 1151

and the distribution categories of:

- f) Music Composition and Performance
 All MUSC, MUSE, MUSO, COMP, MREP, MUTH, and performance courses in the Blair School of Music, except MUSO 1001.
- g) Cognition and Development
 Peabody College courses in Psychology and Human Development numbered 1205, 1207, 1250, 2200, 2250, 2300, 2400, 2500, 2550, 2600, and 3150, and in Human and Organizational Development numbered 1250, 1300, 2100, 2260, 2400, 2500, 2700, and 3232.

Within the 18-hour requirement, the student must meet the following distribution requirements:

1. At least 3 credit hours in each of at least three different categories
2. At least 6 credit hours in one category

Open Electives

Courses excluded from the listings in the Liberal Arts Core may be taken as open electives.

Officer Education

Course offerings in military science and naval science are described in the chapter on Special Programs for Undergraduates near the front of the catalog. All officer education courses designated as eligible for credit may be taken as open electives. In addition, officer education courses in history and political science carry AXLE designations and may be taken as part of the Liberal Arts Core. AFROTC students may count 6 hours of the military courses as open electives.

Master of Engineering

The master of engineering (M.Eng.) is an advanced professional degree awarded by the School of Engineering and especially designed for engineering practitioners who may prefer to work while doing professional study. It is also suitable for individuals who apply directly from undergraduate school—but the thrust of the program is toward professional practice in engineering rather than research or teaching. The degree is currently offered in biomedical engineering, chemical engineering, civil engineering, electrical engineering, environmental engineering, and mechanical engineering.

Students must complete 30 hours of approved course work. For information on the Accelerated Graduate Program in Engineering degrees, see the chapter on Special Programs. A maximum of 6 hours of graduate-level work may be transferred from another institution. Residency requirements are flexible, and a maximum period of seven years is allowed to complete the degree. An extensive, written design report shall be submitted on a project approved by the student’s committee.

Admission to the Master of Engineering program normally requires graduation from an approved undergraduate program in engineering or a related scientific discipline, attainment of a B average in undergraduate courses applicable to the student’s career goals, and recommendations containing favorable appraisals of professional promise and attitude. A period of successful work experience prior to application to the program will also be given consideration. Application for admission should be sent to the associate dean of the School of Engineering. Further information about the program may be obtained by writing to the same office.

For information on integrated bachelor and master of engineering degrees, see the chapter on Special Programs.
Special Programs

Honors Programs
Honors programs allow selected undergraduate students to develop individually through independent study and research. Individual honors programs are described in the Courses of Study chapter.

Requirements vary somewhat but, in general, to qualify for consideration a student should have (a) completed the technical course requirements of the first two years, (b) attained a minimum grade average of 3.5 in all work taken for credit, and (c) shown evidence indicating a capacity for independent study and/or research. Formal admission is by election of the department concerned. Once admitted, students remain in the program only if they maintain a 3.5 or higher grade average.

Accepted candidates normally begin honors study in the junior year, but exceptions may be made for outstanding seniors.

Successful candidates are awarded Honors in their area of interest. This designation appears on their diplomas.

Study Abroad
Vanderbilt’s Global Education Office offers approximately thirty programs that allow students to take engineering or computer science courses in English abroad, in locations ranging from Ireland to Israel, South Africa to Singapore, and beyond. There are no language prerequisites for these programs. These programs also allow students to take a range of liberal arts core and elective courses abroad. If a program has been approved for direct credit by Vanderbilt, it must be taken as the approved direct-credit program. In no case may a student apply to participate in an approved direct-credit program for transfer credit through a different university or through an external agency and then seek to transfer that credit into Vanderbilt. Financial aid can be used for study abroad during the academic year, and scholarships are available to support summer study abroad. Students are encouraged to discuss with their academic advisers how best to incorporate study abroad into their four-year plans of study. Further information can be obtained from the Vanderbilt Global Education Office.

Teacher Education
Students who are interested in preparing for licensure as secondary school teachers should plan their programs in consultation with the associate dean in the School of Engineering. The School of Engineering and Peabody College offer a teacher education program leading to secondary school licensure in physics (grades 9 through 12) and computer technology. Successful candidates are awarded Honors in their area of interest. This designation appears on their diplomas.

Minors
A minor consists of at least five courses of at least 3 credit hours each within a recognized area of knowledge. A minor offers students more than a casual introduction to an area, but less than a major. A minor is not a degree requirement, but students may elect to complete one or more. Courses may not be taken on a Pass/Fail basis. A minor for which all designated courses are completed with a grade point average of at least 2.0 will be entered on the transcript at the time of graduation.

When a minor is offered in a discipline that offers a major, only those courses that count toward the major may be counted toward the minor. Students should refer to the appropriate sections of this catalog for specific requirements.

Three-Two Program
The School of Engineering recognizes a Three-Two program with certain liberal arts colleges. This plan allows students to attend a liberal arts college for three years of undergraduate study, usually majoring in mathematics or science, where they meet the residence requirements for a degree from that institution. They then transfer to the Vanderbilt University School of Engineering for two years of technical work in an engineering curriculum. Upon completion of the five years, students receive two bachelor’s degrees, one from the liberal arts college and one from the School of Engineering. Students who lack the preparation to begin the junior curriculum in their major will need three years at Vanderbilt to complete the bachelor of engineering.

To complete all required technical courses at Vanderbilt in two years, students enrolled in the Three-Two program should complete, before coming to Vanderbilt, as many as possible of the mathematics and science courses listed in the specimen curriculum—in general, mathematics through differential equations, a year of physics, a year of another laboratory
science (usually chemistry), and a semester of computer programming. Students should plan their three years of liberal arts study so as to satisfy as nearly as possible the freshman and sophomore requirements of the particular engineering curriculum in which they will major at Vanderbilt.

Admission to the Three-Two program must be certified by the liberal arts college and is recognized by Vanderbilt University School of Engineering through special agreement between Vanderbilt and each of the liberal arts colleges participating in the Three-Two program.

Dual Degree Program with Fisk University

A coordinated dual degree program between the Vanderbilt University School of Engineering and Fisk University is especially designed to permit students to obtain an A.B. degree in biology, chemistry, computer science, physics, or mathematics from Fisk and a B.E. or B.S. degree in engineering from Vanderbilt, generally within five years.

For the first three years, the student is enrolled at Fisk in a science curriculum and, by cross-registration in the second and third years, takes introductory engineering courses at Vanderbilt. During the fourth and fifth years, the student is enrolled at Vanderbilt, following principally an engineering curriculum at Vanderbilt and completing science courses at Fisk. At the end of five years, the student should be able to satisfy the requirements for both bachelor’s degrees.

Financial aid is available for qualified, deserving students. Additional information is available from the director of transfer admissions in the Office of Undergraduate Admissions.

Integrated Bachelor of Science/Master of Business Administration

In the five-year joint program in engineering and management, the student spends three undergraduate years in the engineering science major in the School of Engineering followed by two years at the Owen Graduate School of Management. First-year Owen School courses are used to meet the student’s elective requirements for the B.S. in Engineering Science, with a concentration in Engineering Management. Successful students receive the B.S. from the School of Engineering after their first year at the Owen School and the MBA from the Owen School the following year.

Application to the Owen School normally is made during the student’s junior year. Successful completion of the undergraduate curriculum in engineering science does not ensure admission to the Owen School.

Bachelor of Science in Computer Science/Master of Science in Finance

A program of study is available in which students can obtain a B.S. in computer science from the School of Engineering in four years and be well prepared for admission to the M.S. in Finance program in the Owen Graduate School of Management. Students spend their fifth year of study at the Owen School. Admission to the M.S. in Finance program is contingent upon performance. Students receive a strong background in computer programming and economics; minors in engineering management and mathematics are facilitated, providing further depth in preparation for the M.S. in Finance. The recommended curriculum is maintained on the computer science portion of the webpages of the Department of Electrical Engineering and Computer Science.

Integrated Bachelor and Master of Engineering

On the basis of recommendations containing favorable appraisals of professional promise, undergraduate students in the School of Engineering who have completed at least 75 hours with at least a B average may be accepted into an integrated Bachelor of Engineering–Master of Engineering program. The last two years of a student’s program is planned as a unit and may thereby include a broader choice of technical work.

To protect the option of dropping back to the bachelor of engineering as a terminal degree, students who enter the integrated B.E.–M.Eng. program are advised to satisfy all requirements for the bachelor of engineering degree as promptly as feasible. Further information about the program is available from the chair of the student’s major department.

Accelerated Graduate Program in Engineering

Students who enter Vanderbilt with a significant number of credits (20 to 30 hours), earned either through Advanced Placement tests or in college courses taken during high school, may be eligible for the Accelerated Graduate Program in Engineering. Through this program, a student is able to earn both a bachelor’s degree and an M.S. degree in about the same time required for the bachelor’s degree. To be eligible for the program a student must complete 86 hours (senior standing) by the end of the sophomore year with at least a 3.5 grade point average. With the approval of the faculty in their major department, students apply through the associate dean for graduate studies for provisional admission and take one course approved for graduate credit each semester of the junior year. These courses will be credited toward the M.S. degree. Upon successful completion of these courses, the student is admitted to the Graduate School.

During the fourth year the student takes three courses (9 hours) for graduate credit each semester, and the remaining 6 to 10 undergraduate hours required for the bachelor’s degree. The student receives the bachelor’s degree at the end of the fourth year and spends the summer finishing a master’s thesis to complete the M.S. degree. Further information can be obtained from the chair of the student’s major department.
Honors

Founder's Medal
The Founder's Medal, signifying first honors, was endowed by Commodore Cornelius Vanderbilt as one of his gifts to the university. The recipient is named by the Dean after consideration of faculty recommendations and the grade point averages of the year's summa cum laude graduates.

Latin Honors Designation
Honors noted on diplomas and published in the Commencement Program are earned as follows:

Summa Cum Laude. Students whose grade point average equals or exceeds that of the top 5 percent of the previous year's Vanderbilt graduating seniors.

Magna Cum Laude. Students whose grade point average equals or exceeds that of the next 8 percent of the previous year's Vanderbilt graduating seniors.

Cum Laude. Students whose grade point average equals or exceeds that of the next 12 percent of the previous year's Vanderbilt graduating seniors.

Dean's List
The Dean's List recognizes outstanding academic performance in a semester. Students are named to the Dean's List when they earn a grade point average of at least 3.500 while carrying 12 or more graded hours, with no temporary or missing grades in any course (credit or non-credit) and no grade of F.

Honor Societies
TAU BETA PI. The Tennessee Beta chapter of the Tau Beta Pi Association was installed at Vanderbilt University 7 December 1946. Members of Tau Beta Pi are selected from undergraduate students in the School of Engineering who have completed at least four semesters of required work, are in the upper eighth of their class scholastically, and have shown marked qualities of character and leadership; seniors in the upper fifth of their class scholastically are also eligible for election.

CHI EPSILON. The Vanderbilt chapter of Chi Epsilon, installed 18 March 1967, is restricted to undergraduate civil engineering students in the top third of their class. Election is based on grade point average, faculty recommendation, and exceptional achievements in extracurricular campus activities.

ETA KAPPA NU. The Epsilon Lambda chapter of the Eta Kappa Nu Association was established 22 April 1966. Undergraduate members are selected from the upper third of the class in electrical engineering. Eta Kappa Nu recognizes leadership and scholastic accomplishment twice annually, selecting members also from the professional body of practicing engineers.

ALPHA SIGMA MU. The Vanderbilt chapter of Alpha Sigma Mu was installed in 1977. Senior materials engineering students in the upper twenty percent of their graduating class are eligible upon recommendation of departmental faculty.

PI TAU SIGMA. The Delta Alpha chapter of Pi Tau Sigma was installed on the Vanderbilt campus 22 April 1971, for the purpose of recognizing scholastic achievement and professional promise in junior and senior mechanical engineering students. Students are elected to membership twice each year on the basis of academic excellence and recommendations from the faculty and chapter members.

SIGMA XI. The Vanderbilt chapter of the Society of Sigma Xi recognizes accomplishment, devotion, and originality in scientific research. Associate members are elected annually from graduate-level students of the university.

HONOR SOCIETIES FOR FRESHMEN. Freshmen who earn a grade point average of 3.5 or better for their first semester are eligible for membership in the Vanderbilt chapter of Phi Eta Sigma and Alpha Lambda Delta.

Other Awards and Prizes
DEAN’S AWARD FOR OUTSTANDING SERVICE. Awarded to the senior candidate in the School of Engineering who has shown remarkable leadership qualities and who has also made the greatest contribution in personal services to the School.

DEAN’S AWARD FOR OUTSTANDING SCHOLARSHIP. Awarded to each member of the senior class who graduates summa cum laude.

PROGRAM AWARDS. The faculty associated with each of the departments of the school annually bestows a certificate and a prize to one member of the graduating class who is judged to have made the greatest progress in professional development during his or her undergraduate career.

AMERICAN INSTITUTE OF CHEMISTS AWARD. Awarded to an outstanding undergraduate student majoring in Chemical Engineering on the basis of a demonstrated record of leadership, ability, character, scholastic achievement, and potential for advancement of the chemical professions.

GREG A. ANDREWS MEMORIAL AWARD. Endowed in 1969 and awarded to the senior in civil engineering who has made the greatest progress in professional development and who plans to do graduate work in environmental and water resources engineering.

THOMAS G. ARNOLD PRIZE. Endowed in 1989 and awarded by the biomedical engineering faculty to the senior who presents the best design of a biomedical engineering system or performance of a research project in the application of engineering to a significant problem in biomedical science or clinical medicine.

WALTER CRILEY PAPER AWARD. Endowed in 1978 and awarded in electrical engineering for the best paper on an advanced senior project in electrical engineering.

JAMES SPENESS DAVIS AWARD. Given annually by the student chapter of Eta Kappa Nu in memory of Mr. Davis, this award recognizes excellence in the undergraduate study of electronics.

ARTHUR J. DYER JR. MEMORIAL PRIZE. Endowed in 1938 and awarded in civil engineering to the member of the senior class doing the best work in structural engineering.

WALTER GILL KIRKPATRICK PRIZE IN CIVIL ENGINEERING. Endowed and awarded in the School of Engineering to the most deserving third-year undergraduate student in civil engineering.
WILSON L. AND NELLIE PYLE MISER AWARD. Awarded to the senior engineering student who has been judged by the faculty of mathematics to have excelled in all aspects of mathematics during his or her undergraduate career.

STEIN STONE MEMORIAL AWARD. Endowed in 1948 and awarded in the School of Engineering to the member of the graduating senior class who has earned a letter in sports, preferably in football, and who is adjudged to have made the most satisfactory scholastic and extramural progress as an undergraduate.

W. DENNIS THREADGILL AWARD. Awarded to a graduating chemical engineering senior for outstanding achievement in the undergraduate program in honor of a former faculty member and department chair.
Academic Regulations

Honor System
All academic work at Vanderbilt is done under the honor system (see Life at Vanderbilt chapter).

Responsibility to Be Informed
It is the responsibility of the student to keep informed of course requirements and scheduling. Failure to do so may jeopardize graduation.

Academic Advising
A faculty adviser is appointed for each student. This adviser is chosen from the faculty in the student’s major, when the major is known. For students who have not chosen a major upon entry, an adviser is selected from faculty in any department. If a student later chooses a different department for his or her major, a corresponding change of adviser is made. Engineering students are required to see their advisers at registration and any other time changes must be made in their programs of study. Any student who has academic difficulty is expected to see his or her faculty adviser for counsel. Faculty advisers can also provide useful career guidance.

Accreditation and Professional Registration
Legislation exists in the various states requiring registration of all engineers who contract with the public to perform professional work. Although many engineering positions do not require professional certification, Vanderbilt supports registration and encourages its graduates to take the Fundamentals of Engineering examination as soon as they become eligible.

Bachelor of engineering degrees in biomedical engineering, chemical engineering, civil engineering, computer engineering, electrical engineering, and mechanical engineering are accredited by the Engineering Accreditation Commission of ABET (abet.org). Students in these programs may take the Fundamentals of Engineering examination as seniors. In addition, proven professional experience is a requirement for registration. Other state boards may have different rules.

Graduate Record Examination
Most graduate schools, including Vanderbilt’s, require or strongly encourage submission of Graduate Record Examination scores as a condition for admission. Further information can be obtained by writing the Educational Testing Service, Box 6000, Princeton, New Jersey 08540.

Credit Hour Definition
Credit hours are semester hours; e.g., a three-hour course carries credit of three semester hours. One semester credit hour represents at least three hours of academic work per week, on average, for one semester. Academic work includes, but is not necessarily limited to, lectures, laboratory work, homework, research, class readings, independent study, internships, practical work, recitals, practicing, rehearsing, and recitations. Some Vanderbilt courses may have requirements which exceed this definition. Certain courses (e.g., dissertation research, ensemble, performance instruction, and independent study) are designated as repeatable as they contain evolving or iteratively new content. These courses may be taken multiple times for credit. If a course can be repeated, the number of credits allowable per semester will be included in the course description.

Normal Course Load
Each semester, regular tuition is charged on the basis of a normal course load of 12 to 18 semester hours. No more than 18 or fewer than 12 hours may be taken in any one semester without authorization from the dean. There is an extra charge for more than 18 hours at the current hourly rate. Students permitted to take fewer than 12 hours are placed on probation, unless their light load is necessary because of illness or outside employment. A student must be enrolled in a minimum of 12 hours to be classified as a full-time student.

Grading System
Work is graded by letter. A, B, C, and D are considered passing grades. The grade F signifies failure. A student who withdraws from a course before the date given in the Academic Calendar is given the grade W. A student may not withdraw from a course after that date.

Grade Point Average
A student’s grade point average is obtained by dividing the total grade points earned by the number of hours for which the student registered, excluding courses taken for no credit, those from which the student has withdrawn, those with the temporary grade of I or M, and those that are completed with the grade Pass.

Defined Grades with Corresponding Grade Points Per Credit Hour

<table>
<thead>
<tr>
<th>Grade</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>4.0</td>
</tr>
<tr>
<td>A</td>
<td>4.0</td>
</tr>
<tr>
<td>A–</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
</tr>
<tr>
<td>B–</td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>2.0</td>
</tr>
<tr>
<td>C–</td>
<td>1.7</td>
</tr>
<tr>
<td>D+</td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td>1.0</td>
</tr>
<tr>
<td>D–</td>
<td>0.7</td>
</tr>
<tr>
<td>F</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Pass/Fail Course Provision
Students may elect to take a limited number of courses on a Pass/Fail basis. To enroll for a course on a Pass/Fail basis, students must have completed at least two semesters at Vanderbilt, must have achieved at least sophomore standing, and must not be on academic probation.

In addition, the following regulations apply to students enrolled in the School of Engineering:

1. No more than 9 hours graded Pass will be accepted toward the B.S. or B.E. degree.
2. No more than 6 hours of introductory level courses may be included in the total of Pass hours.
3. No more than two courses may be taken on a Pass/Fail basis in any one semester.
4. A minimum of 12 hours must be taken on a graded basis in any semester that a Pass/Fail course is taken. However, a
graduating senior who needs fewer than 12 hours to graduate may take courses on a Pass/Fail basis as long as he or she takes the number of hours needed to graduate on a graded basis.

5. No required courses may be taken on a Pass/Fail basis.

6. The Pass/Fail option applies only to courses classified as open electives; elective courses offered in the College of Arts and Science, Blair School of Music, and Peabody College; and technical electives not considered part of the student’s major field as defined by the curriculum committee of the major field.

Students may register for grading on a Pass/Fail basis until the close of the change period at the end of the first week of classes. Students may change from Pass/Fail to graded status until the deadline date for dropping a course that is published in the Academic Calendar.

Those electing the Pass/Fail option must meet all course requirements (e.g., reports, papers, examinations, attendance, etc.) and are graded in the normal way. Instructors are not informed of the names of students enrolled on a Pass/Fail basis. At the end of the semester, a regular grade is submitted for the student enrolled under the P/F option. Any grade of D- or above is converted in the Student Records System to a D. I is not intended as a replacement for a failing grade, nor should it be assigned if a student simply misses the final examination. The grade of M is used for the latter purpose. The request for an I is generally initiated by the student but must be approved and assigned by the instructor. When assigning an Incomplete, the instructor specifies (a) a deadline by which the I must be resolved and replaced by a permanent grade and (b) a default course grade that counts the missing work as zero. The deadline may be no later than the end of the next regular semester. Extension beyond that time must be approved by the associate dean. If the work is not completed by the deadline the default grade will become the permanent grade for the course. The Incomplete is not calculated in the GPA, but a student who receives an Incomplete is ineligible for the Dean’s List.

I: Incomplete

The Incomplete (I) is a temporary placeholder for a grade that will be submitted at a later date. The grade of I is given only under extenuating circumstances and only when a significant body of satisfactory work has been completed in a course. The I is not intended as a replacement for a failing grade, nor should it be assigned if a student simply misses the final examination. The grade of M is used for the latter purpose. The request for an I is generally initiated by the student but must be approved and assigned by the instructor. When assigning an Incomplete, the instructor specifies (a) a deadline by which the I must be resolved and replaced by a permanent grade and (b) a default course grade that counts the missing work as zero. The deadline may be no later than the end of the next regular semester. Extension beyond that time must be approved by the associate dean. If the work is not completed by the deadline the default grade will become the permanent grade for the course. The Incomplete is not calculated in the GPA, but a student who receives an Incomplete is ineligible for the Dean’s List.

M: Missed Final Examination

The grade of M is given to a student who misses the final examination and is not known to have defaulted, provided the student could have passed the course had the final examination been successfully completed. The grade of F is given if the student could not pass the course even with the final examination. It is the student’s responsibility to contact the Office of the Dean before the first class day of the next regular semester to request permission to take a makeup examination. The makeup examination must be taken on or before the tenth class day of the next regular semester. If the request has not been submitted by the proper time, or if the student fails to take the makeup examination within the prescribed time, the M grade will be replaced by a default grade submitted by the instructor when the M is assigned.

F: Failure

A subject in which the grade F is received must be taken again in class before credit is given. A student who deserts a course without following the correct procedure for dropping it will receive an F in the course.

Senior Re-examination. A candidate for graduation who fails not more than one course in the final semester may be allowed one re-examination, provided the course failed prevents the student’s graduation, and provided the student could pass the course by passing a re-examination. Certain courses may be excluded from re-examination. The re-examination must be requested through the student’s Dean’s Office, and, if approved, is given immediately after the close of the last semester of the student’s senior year. A student who passes the re-examination will receive a D- in the course. The terms and administration of senior re-examination are the responsibility of the school that offers the course. For engineering students taking engineering courses, the senior re-examination policy applies if a student fails not more than one course in the senior year.

RC: The Repeated Course Designator

Courses in which a student has earned a grade lower than B– may be repeated under certain conditions. A course in which the student earned a grade between D– and C+, inclusive, may be repeated only once. The repeat must be accomplished within one year of the first attempt for courses offered every year, or, for courses not offered within a year, the first time the course is offered. Failed courses may be repeated at any time. A course may be repeated only on a graded basis, even if the course was originally taken Pass/Fail. Courses taken Pass/Fail in which the student earned a Pass may not be repeated. When registering for a course previously completed, the student must indicate that the course is being repeated. A course cannot be repeated through credit by examination.

Students should note that repeating a course may improve the grade point average, but it may also lead to problems in meeting minimum hour requirements for class standing and progress toward a degree. Repeating a course does not increase the number of hours used in calculation of the grade point average. All grades earned will be shown on the transcript, but only the latest grade will be used for computation of grade point averages.

W: Withdrawal

A student may withdraw from a course at any time prior to the deadline for withdrawal published in the Academic Calendar. The deadline is usually the Friday following the date for reporting mid-semester deficiencies. The W is recorded for any course from which a student withdraws. A course in which a W is recorded is not used in figuring grade point averages.
Candidates for a degree must have completed satisfactorily all curriculum requirements, have passed all prescribed examinations, and be free of indebtedness to the university.

The specific course requirements and total hours required for the bachelor’s degree vary with the student’s major program. Detailed requirements for each program are shown in the specimen curricula in the Courses of Study section. If graduation requirements change during the time students are in school, they may elect to be bound by the requirements published in the catalog in either their entering or their graduating year.

It is the student’s responsibility to provide all information needed for an assessment of the program for which transfer credit is requested. Work transferred to Vanderbilt from another institution will not carry with it a grade point average. No course in which a grade below C- was received will be credited toward a degree offered by the School of Engineering.

Transfer students must complete at least 60 hours of work at Vanderbilt. Two of the semesters must be the senior year.

Work that a student contemplates taking at a summer school other than Vanderbilt is treated as transfer work and must be approved in advance in writing by the student's adviser and the associate dean in the School of Engineering, at which time a course description must be submitted. A course a student has taken at Vanderbilt may not be repeated in another institution to obtain a higher grade.

In certain circumstances students may be awarded course credit by departmental examination. (This procedure is distinct from the award of credit through the College Board Advanced Placement Examinations, taken prior to a student’s first enrollment at Vanderbilt or another college.)

Students who want to earn credit by departmental examination should consult the associate dean concerning procedures. To be eligible, students must be in good standing.

Students must obtain the approval of the chair of the department that is to give the examination and of the instructor designated by the chair. Students may earn up to 8 hours of credit by examination in any one department, although this limitation might be raised on petition to the Administrative Committee. Students may attempt to obtain credit by examination no more than twice in one semester, no more than once in one course in one semester, and no more than twice in one course.

Credit hours and grade are awarded on the basis of the grade earned on the examination, subject to the policy of the department awarding credit. Students have the option of refusing to accept the credit hours and grade after learning the results of the examination.

Students enrolled for at least 12 hours are not charged tuition for hours for which credit by examination is awarded, so long as the amount of credit falls within the allowable limits of an 18-hour tuition load, including no-credit courses dropped after the change period of registration. Students in this category must pay a fee of $50 for the cost of administering the examination. Full-time students with a tuition load exceeding 18 hours and students taking fewer than 12 hours pay tuition at the regular rate with no additional fee.

A period is designated in each semester during which continuing students, after consultation with their advisers, register for work to be taken during the next term. Students can access both their registration appointment times and the registration system via YES (Your Enrollment Services) at yes.vanderbilt.edu.

Regularly enrolled students in the School of Engineering who want to audit courses in any of the undergraduate schools of the university must get the written consent of the instructor to attend the class but do not register for the course for credit. Forms are available from the School of Engineering Office of Academic Services. No permanent record is kept of the audit. Regular students may audit one class each semester.

During the change period of registration as defined in the Academic Calendar, students may add or drop courses without academic penalty after securing approval from their adviser. After the change period, new courses may not be added, except under very unusual circumstances and with the approval of the adviser, the course instructor, and the associate dean.

A student may drop a course without entry on the final record, provided the course is dropped during the change period of registration. After the first week of classes and extending to the end of the eighth week, a course may be dropped with approval of the student’s adviser; a W (withdrawal) will be recorded.

To drop a course or change sections after the change period ends, the student must procure a Change of Course form from the Office of Academic Services. The student then obtains the signature of his or her adviser and of all instructors involved in the proposed change and returns the form to the Office of Academic Services.

Examinations are usually given at the end of each semester in all undergraduate courses except for certain laboratory courses or seminars. Exams will be no longer than three hours in length and are given according to the schedule published in the Schedule of Courses (the School of Engineering does not offer an alternate examination schedule). All examinations are conducted under the honor system.
Residence Requirements
A minimum of four semesters including the last two semesters shall be spent in residence in the School of Engineering. During these four or more semesters, the student must have completed at least 60 semester hours of an approved curriculum in one of the degree programs. In unusual cases, an exception to this requirement may be made by the Administrative Committee upon the recommendation of the department concerned.

Class Standing
To qualify for sophomore standing, a student must earn a minimum of 24 hours and maintain a grade point average of at least 1.8 and have completed two regular semesters. For the purposes of class standing, a regular semester is defined as any fall or spring term in which a student is registered for at least 12 hours. Freshmen who fail to qualify for sophomore standing after two semesters are placed on probation. Freshmen who fail to qualify for sophomore standing in three semesters may be dropped.

The summer session counts as a semester for this purpose.

To qualify for junior standing, a student must earn a minimum of 54 hours and maintain a grade point average of at least 1.9 and have completed four regular semesters. Sophomores who fail to qualify for junior standing at the end of two semesters after qualifying for sophomore standing are placed on probation. A student who has been on probation for failure to qualify for junior standing and who does not qualify for junior standing in one extra semester may be dropped.

A student who has qualified for junior standing has two semesters to qualify for senior standing. Senior standing requires the completion of 86 hours and a minimum grade point average of 2.0 and the completion of six regular semesters. Juniors who do not qualify for senior standing at the end of the second semester after qualifying for junior standing will be placed on probation. A student who has been on probation for failure to qualify for senior standing and who does not qualify for senior standing in one extra semester may be dropped.

Seniors who do not qualify for graduation at the end of the second semester after being promoted to the senior class will be placed on probation and given one more semester to complete the graduation requirements. A senior who has been on probation for failing to complete the graduation requirements and who fails to complete the requirements in one additional semester may be dropped.

Proportion
A freshman who fails to complete 9 hours and earn a 1.7 grade point average during any semester is placed on probation. A sophomore, junior, or senior who fails to complete 12 hours and earn a 2.0 grade point average during any semester is placed on probation. The student is removed from probation after completing 12 hours and earning a 2.0 grade point average during any semester provided that sufficient credit hours are obtained for promotion to the next class.

Full-time sophomores are removed from probation after earning 12 hours and a 2.0 grade point average in a given semester, except that those who have not qualified for junior standing after two semesters as a sophomore must in the next semester fulfill the requirement for junior standing. Failure to do so will cause the student to be dropped.

A student who fails all courses in any semester will be dropped.

To remain in good standing, a student must pursue a program leading toward a degree in the School of Engineering. A student who is deemed by the Administrative Committee not to be making satisfactory progress toward a degree in engineering will be dropped.

A student authorized by the Administrative Committee to carry fewer than 12 hours because of illness or outside employment, or for some other valid reason, may be placed on probation if the student’s work is deemed unsatisfactory by the Administrative Committee and will be removed from probation when the committee deems the work satisfactory.

Class Attendance
Students are expected to attend all scheduled meetings of each class in which they are enrolled. At the beginning of each semester, instructors will explain the policy regarding absences in each of their classes. Students having excessive absences will be reported to the Office of the Dean. If class attendance does not improve thereafter, the student may be dropped from the class with the grade W, if passing at the time, or the grade F, if failing at the time. Class attendance may be a factor in determining the final grade in a course.

Scholarship Requirements
Those students having honor scholarships are expected to maintain a 3.0 grade point average while taking a minimum of 12 hours. Failure to maintain a 3.0 grade point average each year will result in the cancellation of the scholarship.

Grade Reports
A grade report will be available to the student on Academic Record in YES as soon as possible after the conclusion of each semester. This report will give the total hours and grade points earned during the semester, as well as the cumulative hours and grade points earned through that semester. Students should examine these reports carefully and discuss them with their faculty advisers. Any errors should be reported immediately to the Office of Academic Services of the School of Engineering.

A grade reported and recorded in the Office of the University Registrar may be changed only upon written request of the instructor and with approval of the Administrative Committee. The committee will approve such a change only on certification that the original report was in error.

Undergraduate Enrollment for Graduate Credit
A qualified Vanderbilt junior or senior may enroll in courses approved for graduate credit by the graduate faculty and receive credit which, upon admission to the Vanderbilt University Graduate School, may be applicable toward a graduate degree. The principles governing this option are as follows:

1. Work taken under this option is limited to courses numbered 5000 and above and listed in the catalog of the Graduate School, excluding thesis and dissertation research courses and similar individual research and reading courses.
2. Such work must be in excess of that required for the bachelor’s degree.
3. The student must, at the time of registration, have a B average in the preceding two semesters.
4. The total course load, graduate and undergraduate courses, must not exceed 18 hours in any one semester.

5. Undergraduate students who want to count for graduate credit courses taken under this option must consult the instructor of each course and must, at the time of registration, declare their intention on a form available in the Office of Academic Services.

6. Permission for Vanderbilt undergraduates to enroll in graduate courses does not constitute a commitment on the part of any program to accept the student as a graduate student in the future.

7. An undergraduate student exercising this option will be treated as a graduate student with regard to class requirements and grading standards.

 All students who want to take courses numbered 5000 or above, whether under this option or not, must obtain the written approval of their academic adviser and the instructor of the course.
 Interested students should consult their faculty advisers before attempting to register for graduate courses under this option.

Leave of Absence

A student at Vanderbilt or one who has been admitted to Vanderbilt may, with the approval of his or her academic dean, take an official leave of absence for as much as two semesters and a summer session. Leave of absence forms are available in the Office of Academic Services. A student who fails to register in the university at the end of the leave will be withdrawn from the university.

Change of Address

Any change of address should be reported to the School of Engineering Office of Academic Services or the Office of the University Registrar. The university will consider notices or other information delivered if mailed to the address on file in YES.

Special Students

The normal program of study is 12 to 18 hours per semester. Students authorized by the Administrative Committee to register for fewer than 12 hours are classified as special students.

Withdrawal from the University

A student proposing to withdraw from the university must notify the Office of Academic Services of the School of Engineering so that proper clearance may be accomplished and that incomplete work is not charged as a failure against the student’s record.
Courses of Study

Hours are semester hours. The bracketed [3] indicates 3 semester hours of credit for one semester, and [3–3] for a two-semester course.

2000–2999: Intermediate undergraduate courses. May have prerequisite courses.
3000–4999: Upper-level undergraduate course. Usually have prerequisite courses.
5000+: Courses for graduate credit.

W symbols used in course numbers designate courses that meet departmental writing requirements.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>CE</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>ChBE</td>
<td>Chemical and Biomolecular Engineering</td>
</tr>
<tr>
<td>CmpE</td>
<td>Computer Engineering</td>
</tr>
<tr>
<td>CS</td>
<td>Computer Science</td>
</tr>
<tr>
<td>EECE</td>
<td>Electrical Engineering and Computer Engineering</td>
</tr>
<tr>
<td>ENGM</td>
<td>Engineering Management</td>
</tr>
<tr>
<td>ES</td>
<td>Engineering Science</td>
</tr>
<tr>
<td>ENVE</td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td>ME</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>MSE</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>NANO</td>
<td>Nanoscience and Nanotechnology</td>
</tr>
<tr>
<td>SC</td>
<td>Scientific Computing</td>
</tr>
</tbody>
</table>

The Freshman Year

The freshman year curriculum for all of the engineering disciplines is:

Specimen Curriculum

FALL SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Semester hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1601</td>
<td>General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry 1601L</td>
<td>General Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics 1300</td>
<td>Accelerated Single-Variable Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Science 1401–1403</td>
<td>Introduction to Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

SPRING SEMESTER

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Semester hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 1602</td>
<td>General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry 1602L‡</td>
<td>General Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials Science 1500‡</td>
<td>Materials Science I</td>
<td>3</td>
</tr>
<tr>
<td>and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials Science 1500L</td>
<td>Materials Science Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Mathematics 1301</td>
<td>Accelerated Single-Variable Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1601</td>
<td>General Physics I</td>
<td>3</td>
</tr>
<tr>
<td>Physics 1601L</td>
<td>General Physics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Engineering Science 1115</td>
<td>Engineering Freshman Seminar (optional)</td>
<td>1</td>
</tr>
<tr>
<td>Computer Science 1101 or 1103</td>
<td>Programming and Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15–16</td>
</tr>
</tbody>
</table>

‡ Chemical engineering and biomedical engineering majors must take Chemistry 1602 and 1602L.
Biomedical Engineering

THE foundations of biomedical engineering are the same as those in other engineering disciplines: mathematics, physics, chemistry and engineering principles. Biomedical engineering builds on these foundations to solve problems in biology and medicine over the widest range of scales—from the nanoscale and molecular levels to the whole body. Biomedical engineering provides a robust platform for employment in the medical device and instrumentation industries as well as careers in companies that specialize in the development and application of biologics, biomaterials, implants and processes. Our graduates gain entry into nationally recognized graduate schools for continuing studies in biomedical engineering. Biomedical engineering is also a rigorous path for admission to and success in medical school for those students willing and able to excel in mathematics, physics, chemistry, biology, physiology and engineering.

The Department of Biomedical Engineering at Vanderbilt is unique among biomedical engineering programs in its immediate proximity to the world class Vanderbilt Medical Center, located on our compact campus. Our School of Medicine is among the top ten in funding from the National Institutes of Health and includes a National Cancer Institute-recognized Comprehensive Cancer Center, a major children’s hospital and a Level I trauma center. This proximity and the strong relationships among faculty across multiple schools stimulate high impact research and provide unique educational and research opportunities for students.

Degree Programs. The Department of Biomedical Engineering offers courses of study leading to the B.E., M.S., M.Eng., and Ph.D. Vanderbilt biomedical engineering is a well established program with undergraduate degrees granted continuously since 1965. Our undergraduate curriculum undergoes regular review and revision to ensure relevancy and to maintain full ABET accreditation. Students have complete flexibility in the selection of biomedical engineering, technical, and open electives. This allows focus and depth in areas such as biomaterials and tissue engineering, biomedical imaging, biophotonics, bionanotechnology, modeling, therapy guidance systems, and biomedical instrumentation. Double majors with electrical engineering and with chemical engineering are available.

Facilities. The Department of Biomedical Engineering is located in Stevenson Center. Undergraduate instructional laboratories are equipped for study of biomedical processes, measurement methods and instrumentation. These facilities are equipped with embedded systems for instrumentation, design, and testing that mirror professional practice. Specialized facilities for biomedical imaging, biophotonics, technology-guided therapy including surgical guidance systems, biomaterials and tissue engineering, and nanobiotechnology for cellular engineering and nanomedicine are used both for faculty-led research and instructional purposes.

Undergraduate Honors Program. With approval of the Honors Program director, junior and senior students in biomedical engineering who have achieved a minimum grade point average of 3.5 may be accepted into the undergraduate Honors Program. Students in the program take at least 6 credit hours of 5000-level or above (graduate) biomedical engineering courses, which can be counted toward the 127-hour undergraduate degree requirements as biomedical engineering electives or which can be taken for graduate school credit. Students in the Honors Program must also complete a two-semester-long research project and present a research report; this is generally accomplished through the BME 3860 and 3861 Undergraduate Research elective courses. Honors students must make a grade point average of 3.0 in these classes and maintain an overall 3.5 GPA to be designated as an honors graduate. The diploma designation is Honors in Biomedical Engineering.

Curriculum Requirements

NOTE: New course numbers took effect in fall 2015. Former course numbers are included in course descriptions in this catalog and at this website: registrar.vanderbilt.edu/faculty/course-renumbering/course-lookup/.

The B.E. in biomedical engineering requires a minimum of 127 semester hours, distributed as follows:

2. Basic Science (20 hours): Chemistry 1601/1601L, 1602/1602L; Physics 1601/1601L, 1602/1602L; Biological Sciences 1510/1510L.
3. Introductory engineering and computing (6 hours): ES 1401, 1402, and 1403, and either CS 1103 (preferred) or CS 1101.
4. Electrical engineering (7 hours): ECE 2112, 2213, 2213L.
5. Biomedical engineering (31 hours): BME 2100, 2200, 3000, 3100, 3200, 3300, 4900W, 4950, 4951, 4959.
6. Biomedical engineering electives (12 hours) comprising:
 i) BME elective courses numbered 2210 and higher.
 ii) Up to 3 hours total of BME 3860, 3861. An additional 3 hours of BME 3860-3861 may be used as technical electives.
 iii) Any one of the following: ChBE 4500, 4810, 4870; ECE 4114, 4353, 4354; ENVE 4610; ME 2220. This option does not apply to BME/EE double majors.
iv) BME graduate courses, with the exception of BME 8991–8994, provided the student has a 3.5 GPA and appropriate permissions.

7. Technical electives (12 hours) comprising:
 i) BME electives taken above the 12 credit hour minimum. Up to 3 hours of BME 3860–3861 or other independent study courses in the School of Engineering may be taken as Technical electives.
 ii) Courses in the School of Engineering except ChBE 3300, CE 2200, CS 1151, ENGM 2440, ME 2170, and listings in Engineering Science.
 iii) Courses numbered 2000 or higher in the College of Arts and Science listed in the mathematics and natural sciences (MNS) AXLE distribution category except MATH 2610, 2810, 2820, 3000, and PHYS 2805 (if credit is given for BME 4400).
 iv) Biological Sciences 1511, 1511L.
 v) Nursing 1500, 1601-1602, 5105.

8. Liberal Arts Core (18 hours) to be selected to fulfill the Liberal Arts Core requirements listed under Degree Programs in Engineering.

9. Open electives (6 hours).

Undergraduates in biomedical engineering may apply the pass/fail option only to courses taken as liberal arts core or open electives, subject to school requirements for pass/fail.

Double Majors

I. The double major in biomedical and electrical engineering requires a minimum of 129 semester hours. The requirements include those numbered 1, 2, 3, 5, and 8 for the B.E. in biomedical engineering and the following:
 a. Biomedical engineering electives (3 hours): BME elective courses numbered 2210 and higher.
 b. Electrical engineering (21 hours): EECE 2112, 2116, 2116L, 2213, 2213L, 3214, 3233, 3235, 3235L.
 c. Electrical engineering electives (15 hours) selected as described by item 6 of the Curriculum Requirements in the electrical engineering section of the catalog, but totaling at least 15 hours. Students must complete at least two courses in each of two areas of concentration listed under electrical engineering in the Undergraduate Catalog. At least one course must be a domain expertise course as designated in the catalog. BME 3300 may be included toward satisfying the area of concentration requirement but cannot be counted as an electrical engineering elective.

A specimen curriculum for the double major with electrical engineering can be found on the biomedical engineering department’s website.

II. The double major in biomedical and chemical engineering requires a minimum of 131 hours and is described in the chemical engineering section of the catalog under its curriculum requirements.

Specimen Curriculum for Biomedical Engineering

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th>Semester hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FALL</td>
</tr>
<tr>
<td>BioSci 1510, 1510L</td>
<td>4</td>
</tr>
<tr>
<td>BME 2100</td>
<td>3</td>
</tr>
<tr>
<td>BME 2200</td>
<td>–</td>
</tr>
<tr>
<td>Math 2300</td>
<td>3</td>
</tr>
<tr>
<td>Math 2400</td>
<td>–</td>
</tr>
<tr>
<td>Phys 1602, 1602L</td>
<td>4</td>
</tr>
<tr>
<td>EECE 2112</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 3000</td>
<td>3</td>
</tr>
<tr>
<td>BME 3100, 3101</td>
<td>3, 3</td>
</tr>
<tr>
<td>BME 3200</td>
<td>–</td>
</tr>
<tr>
<td>BME 3300</td>
<td>–</td>
</tr>
<tr>
<td>EECE 2213, 2213L</td>
<td>4, 4</td>
</tr>
<tr>
<td></td>
<td>3, 3</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>
Seniors Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Fall Semester Hours</th>
<th>Spring Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 4900W</td>
<td>Biomedical Engineering Laboratory</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BME 4950, 4951</td>
<td>Design of Biomedical Engineering Systems I, II</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>BME 4959</td>
<td>Senior Engineering Design Seminar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biomedical Engineering or Technical Elective</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts Core</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Open Elective</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>15</td>
</tr>
</tbody>
</table>

* BME 3300 may also be taken in the fall of the senior year.

Course descriptions begin on page 311.

Chemical and Biomolecular Engineering

CHAIR G. Kane Jennings
DIRECTOR OF GRADUATE PROGRAM Clare M. McCabe
DIRECTOR OF UNDERGRADUATE STUDIES Paul E. Labinis
PROFESSORS EMERITI Thomas R. Harris, Robert J. Roselli, John A. Roth, Karl B. Schnelle Jr., Robert D. Tanner
PROFESSORS Peter T. Cummings, Todd D. Giorgio, G. Kane Jennings, David S. Kooson, Paul E. Labinis, Matthew J. Lang, M. Douglas LeVan, Clare M. McCabe, K. Arthur Overholser, Peter N. Pintauro, Sandra J. Rosenthal
PROFESSORS OF THE PRACTICE Russell F. Dunn, Julie E. Sharp
ASSOCIATE PROFESSORS Kenneth A. Debelak, Scott A. Guelcher, Eva M. Harth, Bridget R. Rogers, Jamey D. Young
ASSISTANT PROFESSORS Rizia Bardhan, Shihong Lin, Ethan S. Lippmann, John T. Wilson, Marija Zanic

Chemical engineers play key roles in the development and production of commodity chemicals, pharmaceuticals, and bioengineered materials, high strength composites and specialty polymers, semiconductors and microelectronic devices, and a wide range of ultrapure fine chemicals. Indeed, chemical engineering is essential for the operation of contemporary society. The solutions to many of the problems that we face today—e.g., energy, the environment, development of high-performance materials—will involve chemical engineers.

The undergraduate program in chemical and biomolecular engineering prepares students to contribute to the solution of these and similar problems. Graduates find meaningful careers in industry, in government laboratories, and as private consultants. Some continue their education through graduate studies in chemical engineering, business, law, or medicine.

Mission. The mission of the Department of Chemical and Biomolecular Engineering is to educate those who will advance the knowledge base in chemical engineering, become practicing chemical engineers, and be leaders in the chemical and process industries, academia, and government; to conduct both basic and applied research in chemical engineering and related interdisciplinary areas; and to provide service to the chemical engineering profession, the School of Engineering, Vanderbilt University, the country, and the world.

Degree Programs. The Department of Chemical and Biomolecular Engineering offers the bachelor of engineering in chemical engineering and graduate study leading to the M.Eng., M.S., and Ph.D.

Undergraduate chemical and biomolecular engineering students acquire a solid background in mathematics, chemistry, biology, and physics. The chemical and biomolecular engineering program has as its basis courses in transport phenomena, thermodynamics, separations, and kinetics. Other courses deal with the principles and techniques of chemical engineering analysis and design, along with economic analysis, process control, chemical process safety, and engineering ethics. Laboratory courses offer the student an opportunity to make fundamental measurements of momentum, heat, and mass transport and to gain hands-on experience with bench scale and small scale pilot-plant apparatus, which can be computer controlled. Report writing is a principal focus in the laboratory courses. Many students have the opportunity to carry out individual research projects.

A specimen curriculum for a chemical engineering major follows. This standard program includes a number of elective. Students, in consultation with their faculty advisers, may choose elective courses that maintain program breadth or may pursue a minor or focus area with their chemical engineering major. Specimen curricula for the various focus areas are available on the department website. Double majors may be arranged in consultation with a faculty adviser.

The chemical and biomolecular engineering department recommends that students consider taking the Fundamentals of Engineering Examination (FE) in their senior year. This is the first step in obtaining a license as a professional engineer. The following courses are recommended for preparation for the FE: ECEE 2112, CE 2280, and ME 2190.

Undergraduate Honors Program. The professional Honors Program in chemical engineering provides an opportunity for selected students to develop individually through independent study and research. General requirements are described in the Special Programs chapter. The chemical and biomolecular engineering department requires a minimum overall GPA of 3.5. Acceptance to the program is made by petition to the faculty during the junior year. Transfer students meeting other requirements may be considered for admission after completing one semester at Vanderbilt. Candidates for honors choose their technical courses with the consent of a faculty honors adviser. At least 9 hours of electives numbered 3000 and above (and including at least 6 hours of ChBE courses numbered 4500 to 4899 or 6000-6200) must be taken, plus 6 hours of ChBE 3860 and 3861. A formal written research report is submitted each semester. ChBE 3860 or 3861 is taken with a final report and presentation given in the spring semester of the senior year to the ChBE Faculty and students. For honors students, ChBE 3860 is substituted for ChBE 4900W. The diploma designation is Honors in Chemical Engineering.

Facilities. The chemical and biomolecular engineering department is located in Olin Hall of Engineering. Departmental laboratories are equipped for study of transport phenomena, unit operations, kinetics, and process control. Current research areas for which facilities are available include molecular.
modeling; adsorption and surface chemistry; biochemical engineering and biotechnology; materials; energy and the environment.

Curriculum Requirements

NOTE: New course numbers took effect in fall 2015. Former course numbers are included in course descriptions in this catalog and at this website: registrar.vanderbilt.edu/faculty/course-renumbering/course-lookup/.

The B.E. in chemical engineering requires a minimum of 126 hours course credit. The courses and credits are distributed as follows:

1. Mathematics (14 hours). Required courses: Math 1300, 1301, 2300, 2420.
2. Basic Science (24 hours). Required courses: Chemistry 1601, 1601L, 1602, 1602L, 2221, 2221L, 2222, 2222L; Physics 1601, 1601L, 1602, 1602L.
4. Liberal Arts Core (18 hours). To be selected to fulfill the Liberal Arts Core requirements listed in the Degree Programs in Engineering.
5. Chemical and Biomolecular Engineering (39 hours): ChBE 2100, 2200, 2250, 3200, 3250, 3300, 3350, 3600, 3900W, 4900W, 4950W, 4951W, 4959.
6. Science electives (6 hours). BSCI 1510 or ChBE 2150; Chem 3300 (preferred) or BSCI 2201 or BSCI 2520.
7. Chemical and Biomolecular Engineering electives: 6 hours selected from ChBE courses numbered 4000 and above.
8. Technical electives (6 hours). To be selected from: a) courses in BME, ChBE, CE, CS, EECE, ENVE, ME, MSE, NANO, and SC, except BME 2201 and CS 151; b) courses numbered 1500 or above in the College of Arts and Sciences listed in the mathematics and natural sciences (MNS) AXLE distribution category; and c) ENGM 2160, 3000, 3010, 3100, 3300, 3650, 3700, 4500.
9. Open electives (7 hours)

Double Majors

I. The double major in chemical engineering and biomedical engineering requires a minimum of 131 semester hours. The requirements include those numbered 2, 3, and 4 for the B.E. in chemical engineering and the following:
 a) Mathematics (15 hours): Math 1300, 1301, 2300, 2400.
 b) Biology (4 hours): BSCI 1510, 1510L.
 c) Chemical and Biomolecular Engineering (26 hours): ChBE 2100, 2200, 3200, 3250, 3300, 3350, 3900W, 4950W.
 d) Biomedical Engineering (25 hours): BME 2100, 2200, 3100, 3300, 3400, 4900W, 4950, 4951, 4959.
 e) Electrical Engineering (7 hours): EECE 2112, 2213, 2213L.
 f) ChBE elective: 3 hours selected from ChBE 4500, 4810, 4820.
 g) BME elective: 3 hours selected from BME courses numbered above 2000 except BME 2201, 3000, 3200, 6100, 8991–8994.

II. The double major in chemical engineering and chemistry requires a minimum of 130 semester hours. The requirements include those numbered 1, 2, 3, 4, and 7 for the B.E. in chemical engineering and the following:
 a) Chemical and Biomolecular Engineering (36 hours): ChBE 2100, 2200, 2250, 3200, 3250, 3300, 3350, 3600, 3900W, 4900W, 4950W, 4951W, 4959; ChBE 3600 or 4830.
 b) Science (23 hours): Chem 2100, 2100L, 3010, 3300, 3315, 4965, 4966; BSCI 1510 or ChBE 2150; BSCI 2520.
 c) Engineering Elective: 3 hours selected from courses numbered 2000 or above in BME, ChBE, CE, CS, EECE, ENVE, and ME, except BME 2201 and 3830.

Specimen Curriculum for Chemical Engineering

<table>
<thead>
<tr>
<th>SEMESTER YEAR</th>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem 2221, 2222</td>
<td>Organic Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>Chem 2221L, 2222L</td>
<td>Organic Chemistry Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Math 2300</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>Math 2420</td>
<td>Methods of Ordinary Differential Equations</td>
<td>–</td>
</tr>
<tr>
<td>Physics 1602</td>
<td>General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>Physics 1602L</td>
<td>General Physics Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>ChBE 2100</td>
<td>Chemical Process Principles</td>
<td>3</td>
</tr>
<tr>
<td>ChBE 2200</td>
<td>Chemical Engineering Thermodynamics</td>
<td>–</td>
</tr>
<tr>
<td>ChBE 2250</td>
<td>Modeling and Simulation in Chemical Engineering</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

CHBE 2150	Molecular and Cell Biology for Engineers	3	–
CHBE 3200	Phase Equilibria and Stage-Based Separations	3	–
CHBE 3250	Chemical Reaction Engineering	–	3
CHBE 3300	Fluid Mechanics and Heat Transfer	3	–
CHBE 3350	Mass Transfer and Rate-Based Separations	–	3
CHBE 3600	Chemical Process Control	–	3
CHBE 3900W	Chemical Engineering Laboratory I	–	4
Science Elective: Chem 3300 (preferred), BSCI 2201, or BSCI 2520	3	–	
	Liberal Arts Core	3	3
		15	**16**
Civil Engineering

CHAIR Douglas E. Adams
ASSOCIATE CHAIR Eugene J. LeBoeuf
DIRECTORS OF GRADUATE STUDIES Caglar Oskay (Civil Engineering),
James H. Clarke (Environmental Engineering)
DIRECTOR OF UNDERGRADUATE STUDIES Eugene J. LeBoeuf
PROFESSORS EMERITI Paul Harrawood, Peter G. Hoadley, Hugh F.
Keedy, Frank L. Parker, John A. Roth, Karl B. Schnelle, Jr., Richard E.
Speece, Robert E. Stammer, Jr., Edward L. Thackston
PROFESSORS Mark D. Abkowitz, Douglas E. Adams, Prodyot K. Basu,
David J. Furbish, George M. Hornberger, David S. Kosson, Eugene J.
LeBoeuf, Sarkaran Mahadevan, Charles W. Powers
PROFESSORS OF THE PRACTICE Curtis D. Byers, James H. Clarke,
Sanjiv Gokhale, Steven L. Kranh
RESEARCH PROFESSOR Craig Philip
ASSOCIATE PROFESSORS Alan R. Bowers, Caglar Oskay, Florence
Sanchez
ASSOCIATE PROFESSORS OF THE PRACTICE Lori A. Troxel, John R.
Veillette
RESEARCH ASSOCIATE PROFESSOR Kevin G. Brown
ASSISTANT PROFESSORS Ravindra Duddu, Shihong Lin
RESEARCH ASSISTANT PROFESSOR Janey S. Camp
ADJUNCT PROFESSORS Gregory L. Cashion, Ann N. Clarke, Alan Croff,
B. John Garrick, Vic L. McConnell, Michael T. Ryan, Raymond G. Wymer

VANDERBILT’S Department of Civil and Environmental Engineering
offers a broad-based education in civil and environmental engineering
fundamentals, coupled with development of leadership, management, and
communications skills to establish a foundation for lifelong learning and flexible career development. This
goal requires going beyond technical competence in a balanced
education to develop future leaders in the fields of consulting,
industry, business, law, government, and research. Civil engineers
must be able to face complex problems of modern society involving
the development of physical facilities that serve the public
while protecting the environment and preserving social values.
Challenges facing civil and environmental engineers concern
housing, urban transportation, pollution control, water resources
development, industrial development, maintaining and advancing
our nation’s aging infrastructure, and exploring space. Addressing
these challenges with today’s limited resources requires innovative
and original ideas from highly-skilled engineers.

Undergraduates majoring in civil engineering receive
a strong background in mathematics, science, engineering

 science, and engineering design. The program also includes
courses in economics, humanities, social sciences, resources
management, and public policy. Students participate in design
teams and laboratory studies as well as classroom activities.
Use of various computer-based methods is integral to problem
solving and design.

Degree Programs. At the undergraduate level, the Depart-
ment of Civil and Environmental Engineering offers the B.E. in
civil engineering. The curriculum includes upper-level analysis
and design courses in structural, geotechnical, environmental,
water resources, and transportation engineering. In addition, a
major in chemical engineering with a minor in environmental
engineering is available.

Vanderbilt’s B.E. in civil engineering prepares students for
entry-level positions in many specialty areas of civil engineer-
ing, as well as many other types of careers, such as business,
construction, and law. Today, however, and even more so in
the future, professional practice at a high level will require an
advanced degree. We recommend that students seriously con-
sider pursuing the M.S. or M. Eng. soon after obtaining the B.E.

At the graduate level, the department educates leaders
in infrastructure and environmental engineering research
and practice, with emphasis on the use of reliability and risk
management. Reliability and risk management includes engi-
neering design, uncertainty analysis, construction and repair,
life-cycle and cost-benefit analysis, information management,
and fundamental phenomena intrinsic to the understanding of
advanced infrastructure and environmental systems. Example
applications include performance, reliability and safety of
structures, restoration of contaminated sites, transportation
control systems, management of environmental resources, and
enhancement of the eco-compatibility of industry. Develop-
ment and application of advanced information systems as
applied to civil and environmental engineering needs is an
important part of the program.

The graduate program in civil engineering offers the M.S.
and Ph.D., with emphasis in the areas of structural engineering
and mechanics and transportation engineering.

The graduate program in environmental engineering offers
the M.S. and Ph.D. in the areas of environmental engineering
and environmental science, with emphasis on contaminant
behavior in the environment, waste management, nuclear envi-
ronmental engineering, and environmental remediation. Both
thesis and non-thesis options are available at the M.S. level.
The graduate programs in both civil engineering and environmental engineering also offer the master of engineering (M.Eng.), an advanced professional degree especially designed for practicing engineers wanting to pursue post-baccalaureate study on a part-time basis, and for engineers seeking greater emphasis on engineering design as part of graduate education.

B.E./M.Eng. Five Year Program. Students seeking advanced study in civil and environmental engineering may be interested in the combined B.E./M.Eng., enabling students to complete the B.E. in civil engineering and M.Eng. in civil engineering or environmental engineering in five years.

Construction Management Five Year Program. Students seeking advanced study in construction management may be particularly interested in the combined B.E./M.Eng., enabling students to complete the B.E. in civil engineering and M.Eng. in civil engineering (construction management emphasis) in five years.

Undergraduate Honors Program. Recognized with the diploma designation Honors in Civil Engineering, exceptional students may be invited in their junior year to participate in the civil engineering Honors Program. Designed as a unique individualized educational experience, participants work closely with departmental faculty members to tailor a selection of courses that actively immerses them in a selected field of study. Experiences include enrollment in a 3 semester independent study course and participation in a summer research internship. Honors Program participants are especially well-prepared to enter graduate study, and they may count the independent study course towards their civil engineering technical electives.

Facilities. The civil engineering laboratory provides for static and dynamic testing of materials and structural components and assemblies. Testing facilities include capabilities of testing composites, metals, and concrete under static loads, fatigue, base acceleration (to simulate seismic events) and intermediate to high speed impacts (to simulate responses to blast events). Full soils testing facilities are available. Hydraulics facilities include several model flow systems to illustrate principles of fluid mechanics and hydrology. The transportation laboratory is computer-based, with emphasis on transportation systems and design, intelligent transportation systems, and geographic information systems.

The newly renovated environmental laboratories are fully supplied with modern instrumentation for chemical, physical, biological, and radiological analysis of soils, sediments, water, wastewater, air, and solid waste. They include equipment for the study of biological waste treatment, physical-chemical waste treatment, contaminant mass transfer, and state-of-the-art instrumentation for gas and liquid chromatography, mass spectroscopy, atomic absorption spectroscopy, gamma spectroscopy, inductively coupled plasma mass spectroscopy, gas adsorption (for pore structure determination), thermal mechanical analysis, modulated scanning differential calorimetry, and simultaneous thermal gravimetric analysis differential scanning calorimetry/mass spectroscopy. All are available for student use in courses, demonstrations, and research.

Curriculum Requirements

NOTE: New course numbers took effect in fall 2015. Former course numbers are included in course descriptions in this catalog and at this website: registrar.vanderbilt.edu/faculty/course-renumbering/course-lookup/.

The B.E. in civil engineering requires a minimum of 126 hours, distributed as follows:

1. Mathematics (14 hours). Required courses: Math 1300, 1301, 2300, 2420.
2. Basic science (12 hours). Required courses: Chemistry 1601/1601L and Physics 1601/1601L and 1602/1602L.
3. Basic science elective (4 hours). To be selected from the following list: (a) Biological Sciences—all courses numbered 1510 and above; (b) Earth and Environmental Sciences 1510, 1030, 1030L, 1510L, 3250, 3260, 3330, 3340; and (c) Materials Science and Engineering—all courses except 3850, 3851, 3889, 3890.
5. Engineering fundamentals (27 hours). Required courses: ES 1401, 1402, 1403; CE 2100, 2105, 2200, 2205, 3700, 3700L; ENGM 2160; ME 2190; MSE 2205; ME 2220 or ChBE 2200 (students interested in environmental engineering are encouraged to enroll in ChBE 2220).
6. Probability and statistics elective (3 hours). To be selected from Math 2810 or 2820.
7. Liberal Arts Core (18 hours). To be selected to fulfill the Liberal Arts Core requirements listed under Degree Programs in Engineering.
8. Open electives (6 hours).
9. Technical electives (6 hours). To be selected from the following list: (a) all courses in BME, ChBE, CE, ENVE, EECE, ME, and ENGM 3200, 3010; (b) all courses accepted as science electives as indicated above; (c) Chemistry 1602 and above (d) Physics courses above 2000 (astronomy not accepted); and (e) Math 2410, and courses 2821 and above (except 3000).
10. Civil Engineering Core (27 hours). Required courses: CE 3100W, 3200, 3205, 3250, 3600, 3601, 3705, 4400, and 4900. In addition, all students must complete CE 4950-4951, a two-part, major meaningful and comprehensive project design course.
11. Civil Engineering Professional Electives (6 hours). To be selected from the following list of course offerings: CE 4200, 4210, 4250, 4430, 4500, 4505, 4510; ENVE 4610, 4710, 4716, 4720; ChBE 4899.

Optional Areas of Specialization

Students may desire to use open electives, technical electives, and civil engineering professional electives to gain additional depth and expertise in particular areas of emphasis in civil engineering, including environmental and water resources engineering, structural engineering, and transportation engineering. It is recommended that students discuss specific course selections with their academic adviser. Students desiring advanced topic coverage should also consider 5000-level courses, with approval of their adviser.
Cross-Cutting Courses. The following selected courses are multi-disciplinary in nature, cross-cutting multiple areas of specialization: CE 4100, CE 4300, ENVE 4305, ENVE 4615 and MATH 2410.

Specimen Curriculum for Civil Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Semester hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td>SPRING</td>
<td>FALL</td>
</tr>
<tr>
<td>SOPHOMORE YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math 2300</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>Physics 1602</td>
<td>General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>Physics 1602L</td>
<td>General Physics Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>CE 2100</td>
<td>Civil and Environmental Eng. Information Systems I</td>
<td>2</td>
</tr>
<tr>
<td>CE 2200</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>CE 3601</td>
<td>Transportation Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Math 2420</td>
<td>Methods of Ordinary Differential Equations</td>
<td>–</td>
</tr>
<tr>
<td>CE 2105</td>
<td>Civil and Environmental Eng. Information Systems II</td>
<td>–</td>
</tr>
<tr>
<td>ME 2190</td>
<td>Dynamics</td>
<td>–</td>
</tr>
<tr>
<td>CE 2205</td>
<td>Mechanics of Materials</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Thermodynamics (ME 2220 or ChBE 2200)</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts Core</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 3700</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CE 3700L</td>
<td>Fluid Mechanics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CE 3600</td>
<td>Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 3200</td>
<td>Introduction to Structural Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MSE 2205</td>
<td>Strength and Structure of Engineering Materials</td>
<td>1</td>
</tr>
<tr>
<td>CE 3250</td>
<td>Geotechnical Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts Core</td>
<td>3</td>
</tr>
<tr>
<td>CE 3100W</td>
<td>Civil and Environmental Engineering Laboratory</td>
<td>–</td>
</tr>
<tr>
<td>ENGM 2160</td>
<td>Engineering Economy</td>
<td>–</td>
</tr>
<tr>
<td>CE 3705</td>
<td>Water Resources Engineering</td>
<td>–</td>
</tr>
<tr>
<td>CE 3205</td>
<td>Introduction to Structural Design</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Probability and Statistics Elective</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 4950</td>
<td>Civil Engineering Design I</td>
<td>1</td>
</tr>
<tr>
<td>CE 4400</td>
<td>Construction Project Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CE Professional Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Open Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts Core</td>
<td>3</td>
</tr>
<tr>
<td>CE 4951</td>
<td>Civil Engineering Design II</td>
<td>–</td>
</tr>
<tr>
<td>CE 4900</td>
<td>Civil and Environmental Engineering Seminar</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>
Pre-Architecture Program
Civil engineering students interested in pursuing architecture at the graduate level should include courses that emphasize a broad sense of art and architectural history, including courses in studio art. Before applying to graduate programs, students will need to develop a portfolio of creative work that generally includes drawing, prints, sculpture, photographs, and creative writing. Professor Michael Aurbach in the Department of Art serves as the pre-architecture adviser to Vanderbilt students. In addition, the Vanderbilt student club, BLUEprint, seeks to educate and prepare students interested in this field.

Minor in Environmental Engineering
A minor in environmental engineering is available to all non–civil engineering students. It requires a total of 15 hours of environmental engineering courses, comprising 6 hours of required courses and 9 hours of electives, chosen from the following list:

Required Courses (6 hours)
- CE 4600 – Environmental Engineering
- ENVE 4610 – Environmental Chemistry

Elective Courses (9 hours)
- CE 3705 – Water Resources Engineering
- CE 4100 – Geographic Information Systems
- ChBE 4899 – Atmospheric Pollution
- ENVE 4705 – Physical Hydrology
- ENVE 4700 – Energy and Water Resources
- ENVE 4707 – Solid and Hazardous Waste Management
- ENVE 4710 – Hydrology
- ENVE 4615 – Environmental Assessments
- ENVE 4605 – Environmental Thermodynamics, Kinetics, and Mass Transfer
- ENVE 4610 – Biological Unit Processes
- ENVE 4620 – Environmental Characterization and Analysis
- ENVE 4720 – Surface Water Quality Modeling
- ENVE 4715 – Groundwater Hydrology
- ENVE 4716 – Physical/Chemical Unit Processes
- ENVE 4800 – Introduction to Nuclear Environmental Engineering
- ENVE 4305 – Enterprise Risk Management

Minor in Energy and Environmental Systems
The minor in energy and environmental systems is designed to provide students with a working knowledge of the fundamentals of energy systems and their impact on the environment. The future health and well-being of humanity hinge in large part on smart production and use of energy, water, and related resources, as these are central determinants of climate change, habitable space, and human and ecological health. This program examines the relationships among individual, institutional, and societal choices for energy production and use, and the impacts and benefits of these choices on the environment and health through climate, water quality, and natural resources. It requires a total of 15 semester hours of course work, some of which may be taken as electives associated with the student's major program. Five courses are required: four core courses and the remaining course chosen from a list of electives. A detailed description of the engineering management minor is available in this catalog.

Minor in Engineering Management
A minor in engineering management is available to all students in civil engineering. This program provides students with a working knowledge of the fundamentals of business and engineering management. It requires a minimum of 15 semester hours of course work, some of which may be taken as electives associated with the student's major program. Five courses are required: four core courses and the remaining course chosen from a list of electives. A detailed description of the engineering management minor is available in this catalog.

Study Abroad
Civil engineering students can participate in the Vanderbilt Study Abroad programs (see description of the Study Abroad programs in this catalog). Civil engineering students often participate during the fall semester of their junior year, but students may study abroad in either the sophomore or the junior year.

Civil Engineering
Course descriptions begin on page 316.

Environmental Engineering
Course descriptions begin on page 320.

Computer Engineering
DIRECTOR OF UNDERGRADUATE STUDIES William H. Robinson
PROFESSOR OF THE PRACTICE Ralph W. Bruce
THE program in computer engineering deals with the organization, design, and application of digital processing systems as general-purpose computers or as embedded systems, i.e., components of information processing, control, and communication systems. The program provides a strong engineering background centered on digital technology combined with an understanding of the principles and techniques of computer science. Computer engineering is design-oriented. The basic principles of engineering and computer science are applied to the task at hand, which may be the design of a digital processor, processor peripheral, or a complete digital processor-based system. Whatever the undertaking, the comprehensive academic training in this program enables engineers to evaluate the impact of their decisions, whether working with hardware, software, or the interface between the two.

The computer engineering program combines fundamental core requirements with flexibility to allow students to specialize in a variety of emphasis areas within the program. The curriculum includes requirements in the basic sciences, mathematics, and humanities; a primary core of hardware and software courses; and a set of electives that combine breadth and depth requirements as described below. Students who major in computer engineering who wish to apply for graduate study in electrical engineering or computer science are encouraged strongly to select their elective courses to demonstrate depth in that particular area; the structure of the program enables that option. The course of study leads to a bachelor of engineering.

Undergraduate Honors Program. With faculty approval, junior and senior students may be accepted into the Honors Program. To achieve honors status, the student must:

1. achieve and maintain a minimum GPA of 3.5.
2. choose 6 hours of EE/CmpE program elective credit from among the following list:
 a. research-based independent study credit, or
 b. design domain expertise (DE) courses beyond the one course required by the program, or
 c. 5000-level courses.
3. complete 3 hours of research-based independent study credit (with final written report) in addition to all other requirements.

The diploma designation is Honors in Computer Engineering.

Curriculum Requirements
NOTE: New course numbers took effect in fall 2015. Former course numbers are included in course descriptions in this catalog and at this website: registrar.vanderbilt.edu/faculty/course-renumbering/course-lookup/

The B.E. in computer engineering requires a minimum of 127 hours distributed as follows:

1. Mathematics (18 hours). Required courses: Math 1300, 1301, 2300, 2400, 2810
2. Basic Science (16 hours). Required courses: Chemistry 1601/1601L; Physics 1601/1601L and 1602/1602L; MSE 1500, 1500L (or Chemistry 1602, 1602L).
3. Engineering Fundamentals (6 hours). Required courses: ES 1401, 1402, 1403, 2100W.
5. Computer Engineering Core (at least 26 hours). Required courses: EECE 2112, 2116/2116L, 2218/2218L and either 2213/2213L or 3214; CS 1101, 2201, 2231, and 3251.
6. Computer Engineering Electives (18 hours). Defined by a structure that includes the three Computer Engineering Areas of Concentration listed below. Students must complete at least two courses in each of two areas of concentration. Embedded Systems (Area 1) must include EECE 4376, Computing Systems and Networks (Area 2) must include CS 3281 and Intelligent Systems and Robotics (Area 3) must include EECE 4257. Students must complete at least one approved design domain expertise (DE) course as designated below. Other electives from any of the Areas of Concentration or approved independent study (CS 3860-3861; EECE 3850-3851) to total 18 hours.

Computer Engineering Areas of Concentration

<table>
<thead>
<tr>
<th>Embedded Systems</th>
<th>Computing Systems and Networks</th>
<th>Intelligent Systems and Robotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 4257</td>
<td>CS 3265</td>
<td>CS 4260</td>
</tr>
<tr>
<td>EECE 4275</td>
<td>CS 3274 (DE)</td>
<td>CS 4269 (DE)</td>
</tr>
<tr>
<td>EECE 4356 (DE)</td>
<td>CS 3281</td>
<td>EECE 4257</td>
</tr>
<tr>
<td>EECE 4358 (DE)</td>
<td>CS 3282 (DE)</td>
<td>EECE 4353 (DE)</td>
</tr>
<tr>
<td>EECE 4376 (DE)</td>
<td>CS 4278 (DE)</td>
<td>EECE 4354 (DE)</td>
</tr>
<tr>
<td>EECE 4377 (DE)</td>
<td>CS 4279 (DE)</td>
<td>EECE 4358 (DE)</td>
</tr>
<tr>
<td>EECE 4385 (DE)</td>
<td>CS 4283 (DE)</td>
<td>ME 4271</td>
</tr>
<tr>
<td>CS 3274 (DE)</td>
<td>CS 4284 (DE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 4285</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EECE 4371 (DE)</td>
<td></td>
</tr>
</tbody>
</table>

(DE) designates a Design Domain Expertise course
7. Liberal Arts Core (18 hours). To be selected to fulfill the Liberal Arts Core requirements listed in the Degree Programs in Engineering.

8. Technical electives (15 hours).
 a. (6-15 hours). At least 6 hours must be taken from this list of approved engineering technical electives.
 BME (except 2201, 3860, 3861)
 ChBE
 CE
 CS (except 1103, 1151)
 EECE (hours above basic requirement in sections 5 and 6 above)
 ENGM 3010
 ME
 MSE (except 1500, 1500L)
 NANO 3000
 SC 3250, 3260
 b. (0-9 hours). Up to 9 hours may be taken from this list of optional technical electives.
 ENGM 2160, 2210, 3000, 3100, 3300, 3650, 4500
 MSE 1500, 1500L (if Chemistry 1602, 1602L is used for basic science requirement)
 Astronomy (except 1110, 1111, 2130)
 Biological Sciences (except 1111)
 Chemistry (except 1010, 1020, 1601, 1602, 1111)
 Earth and Environmental Sciences (except 1080, 1111, 2150)
 Mathematics 2410 and above
 Neuroscience 2201, 3269, 4961
 Physics above 2000
 Psychology 2100, 3780

9. Open Elective (3 hours).

Specimen Curriculum for Computer Engineering

<table>
<thead>
<tr>
<th>FRESHMAN YEAR</th>
<th>Semester hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FALL</td>
</tr>
<tr>
<td>EECE 2116/2116L†</td>
<td>–</td>
</tr>
<tr>
<td>CS 1101</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th>Semester hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FALL</td>
</tr>
<tr>
<td>Math 2300</td>
<td>3</td>
</tr>
<tr>
<td>Math 2400</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1602</td>
<td>3</td>
</tr>
<tr>
<td>Physics 1602L</td>
<td>–</td>
</tr>
<tr>
<td>MSE 1500 †</td>
<td>1</td>
</tr>
<tr>
<td>MSE 1500L †</td>
<td>–</td>
</tr>
<tr>
<td>EECE 2112</td>
<td>3</td>
</tr>
<tr>
<td>EECE 2218/2218L</td>
<td>–</td>
</tr>
<tr>
<td>CS 2201</td>
<td>3</td>
</tr>
<tr>
<td>CS 2231</td>
<td>3</td>
</tr>
<tr>
<td>CS 3251</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNIOR YEAR</th>
<th>Semester hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FALL</td>
</tr>
<tr>
<td>Math 2810</td>
<td>–</td>
</tr>
<tr>
<td>ES 2100W</td>
<td>3</td>
</tr>
<tr>
<td>EECE 4376/4376L</td>
<td>–</td>
</tr>
<tr>
<td>or CS 3281</td>
<td>4/3</td>
</tr>
<tr>
<td>EECE 2213/2213L</td>
<td>Circuits II</td>
</tr>
<tr>
<td>or EECE 3214</td>
<td>Signals and Systems</td>
</tr>
<tr>
<td></td>
<td>CmpE Program Elective †</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts Core</td>
</tr>
<tr>
<td></td>
<td>Technical Electives</td>
</tr>
<tr>
<td></td>
<td>15-17</td>
</tr>
</tbody>
</table>
Computer Science

CHAIR Daniel M. Fleetwood
ASSOCIATE CHAIR Douglas C. Schmidt
DIRECTOR OF UNDERGRADUATE STUDIES Julie L. Johnson
DIRECTOR OF GRADUATE STUDIES Xenofon D. Koutsoukos
PROFESSORS EMERITI Lawrence W. Dowdy, Charlotte F. Fischer, J. Michael Fitzpatrick, Stephen R. Schach
PROFESSORS Gautam Biswas, Benoit M. Dawant, Gábor Karsai, Xenofon D. Koutsoukos, Douglas C. Schmidt, Janos Sztipanovits
RESEARCH PROFESSOR Robert Laddaga
ASSOCIATE PROFESSORS Julie A. Adams, Robert E. Bodenheimer, Jr., Douglas H. Fisher, Aniruddha S. Gokhale, Akos Ledeczi, Bradley A. Malin, Nabil Simaan, Jeremy P. Spinrad, Yuan Xue
ASSOCIATE PROFESSOR OF THE PRACTICE Gerald H. Roth
ASSISTANT PROFESSORS Daniel Fabbri, Bennett Landman, Yevgeniy Vorobeychik, Jules White
ASSISTANT PROFESSORS OF THE PRACTICE Graham S. Hemingway, Julie L. Johnson, Robert Tairas
ADJUNCT ASSISTANT PROFESSORS Daniel Balasubramanian, Abhishek Dubey, William R. Otte

THE program in computer science blends scientific and engineering principles, theoretical analysis, and actual computing experience to provide undergraduate students with a solid foundation in the discipline. Emphasis is on computing activities of both practical and intellectual interest, and on theoretical studies of efficient algorithms and the limits of computation. Computer facilities are available for class assignments, team projects, and individual studies. Students are challenged to seek original insights throughout their study. Working in teams, participating in summer internships, supporting student professional organizations, and developing interdisciplinary projects are strongly encouraged.

The computer science major provides an excellent background for medical studies, and the flexibility provided by its many open electives allows students to prepare for medical school while earning a degree in computer science with a normal load in four years. Interested students should discuss their plans with their computer science adviser in the fall of their first year.

In addition to the bachelor of science, the master of science, master of engineering, and doctor of philosophy are also awarded in computer science. Many students choose to double major in mathematics.

Undergraduate Honors Program. The Honors Program provides recognition for select undergraduates who have experienced advanced study in computer science. Students who have an overall GPA of 3.5 or better, a GPA of 3.5 or better in computer science classes, and six hours of any combination of undergraduate research (CS 3860 and 3861) and 6000-level courses will be granted honors in the computer science program. The diploma designation is Honors in Computer Science.

Curriculum Requirements

NOTE: New course numbers took effect in fall 2015. Former course numbers are included in course descriptions in this catalog and at this website: registrar.vanderbilt.edu/faculty/course-renumbering/course-lookup/.

The B.S. in computer science requires a minimum of 120 hours, with distribution as follows:

1. Mathematics (20–22 hours). Required components:
 (a) A calculus sequence (11–16 hours).
 Selected from the following:
 Math 1200, 1201, 2200, 2300
 Math 1300, 1301, 2300
 Math 1300, 1301, 2500, 2501
 (b) Linear algebra (3–4 hours): Math 2410, 2450, or 2500.
 (c) Statistics/Probability (3 hours): Math 2810, 2820, or 3640.
 Elective course (3 hours):
 Selected from: Math 2420 or courses numbered 2610 or higher.

2. Science (12 hours). To be selected from the following list and include at least one laboratory course: Biological Sciences 1100, 1100L, 1510, 1510L, 1511, 1511L, 2218, 2219; Chemistry 1601, 1601L, 1602, 1602L; Earth and Environmental Sciences 1510, 1510L; Materials Science and Engineering 1500, 1500L; Physics 1601, 1601L, 1602, 1602L. Recommended: Chemistry 1601, 1601L; Physics 1601, 1602.

3. Introduction to Engineering (3 hours): ES 1401, 1402, 1403.

4. Liberal Arts Core (18 hours). To be selected to fulfill the Liberal Arts Core requirements listed in the Degree Programs in Engineering.

5. Computer Science Core (28 hours).
 Software/Problem Solving: CS 1101, 2210, 3251, 3270.
 Hardware/Systems: EECE 2116, 2116L; CS 2231, 3281.
 Foundations: CS 2212, 3250.
6. Computer Science Depth (12 hours). To be selected from computer science courses numbered 3000 or higher; EECE 4253, 4354, 4376 and no more than two of the following courses: MATH 3320, 3620, 4600, 4620. At least one course (i.e., 3 hours) must be a designated project course selected from CS 3259, 4269, 4279.

7. Computer Science Project Seminar (1 hour) CS 4959.

8. Technical Electives (6 hours). To be selected from courses numbered 2000 or higher within the School of Engineering (except ENGM 2440 and CS courses numbered below 3000); or courses numbered 2000 or higher in the College of Arts and Science listed in the mathematics and natural science (MNS) AXLE distribution requirements. Students are encouraged to note the two-course sequence EECE 4950-4951.

9. Open Electives (18–20 hours).

10. Computers and Ethics (3 hours) CS 1151. May be used to satisfy three hours from the Liberal Arts Core (#4) or Open Electives (#9).

11. Writing Component. At least one “W”-designated course or 1111 course in the English Language must be included from the Liberal Arts Core (#4) or Open Electives (#9).

Specimen Curriculum for Computer Science

<table>
<thead>
<tr>
<th>Semester hours</th>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESHMAN YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chem 1601</td>
<td>General Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Chem 1601L</td>
<td>General Chemistry Laboratory</td>
<td>–</td>
</tr>
<tr>
<td>Physics 1601</td>
<td>General Physics I</td>
<td>–</td>
</tr>
<tr>
<td>Physics 1601L</td>
<td>General Physics Laboratory I</td>
<td>–</td>
</tr>
<tr>
<td>Math 1300</td>
<td>Accelerated Single-Variable Calculus I</td>
<td>–</td>
</tr>
<tr>
<td>Math 1301</td>
<td>Accelerated Single-Variable Calculus II</td>
<td>–</td>
</tr>
<tr>
<td>ES 1401-1403</td>
<td>Introduction to Engineering</td>
<td>–</td>
</tr>
<tr>
<td>CS 1101</td>
<td>Programming and Problem Solving</td>
<td>–</td>
</tr>
<tr>
<td>Open Electives</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>Liberal Arts Core</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>___</td>
<td></td>
<td>___</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR			
Physics 1602	General Physics II	3	–
Physics 1602L	General Physics Laboratory II	–	3
Math 2300	Multivariable Calculus	–	3
EECE 2116/2116L	Digital Logic	4	–
CS 2201	Program Design and Data Structures	–	3
CS 2212	Discrete Structures	–	3
CS 2231	Computer Organization	–	3
CS 3251	Intermediate Software Design	–	3
Liberal Arts Core	–	3	
Open Elective	–	3	
___		___	
14	15		

JUNIOR YEAR			
Math 2410	Methods of Linear Algebra	–	3
Math 2820	Introduction to Probability and Mathematical Statistics	3	–
ES 2100W	Technical Communications	–	3
CS 3250	Algorithms	–	3
CS 3270	Programming Languages	3	–
CS 3281	Principles of Operating Systems I	–	3
CS Depth	–	3	
Open Electives	–	3	
Liberal Arts Core	–	3	
___		___	
17	15		
Senior Year

CS 4959 Computer Science Project Seminar
 Computer Science Project
 Math Elective
 CS Depth/Technical Elective
 Liberal Arts Core
 Open Electives

Second Major in Computer Science for Non-Engineering Students

The second major in computer science for students enrolled outside the School of Engineering requires 40 hours distributed according to items 5 and 6 of the curriculum requirements listed above.

Courses taken toward the second major may not be taken pass/fail.

Computer Science Minor

The minor in computer science requires 15 hours of computer science courses as follows:

1. Programming: CS 1101 3
2. Discrete Structures: CS 2212 3
4. One of CS 2231, CS 3250, or CS 3251 3
5. One additional CS course numbered 3000 or above 3

Total hours: 15

Electrical Engineering

Chair Daniel M. Fleetwood
Associate Chair William H. Robinson
Director of Undergraduate Studies William H. Robinson
Director of Graduate Studies Robert A. Reed

Professor of the Practice Ralph W. Bruce

Research Professor Michael L. Alles

Research Associate Professors Theodore Bapty, Zhachua Ding, William T. Holman, Sandeep Neema, Arthur F. Witulski

Assistant Professors William A. Grissom, Bennett Landman, Pietro Valdastri, Jason Valentine, Yaqiong Xu

Research Assistant Professors Pierre-François D’Haese, Jeremy Mares, Jack Noble, Supil Raina, Enxia Zhang

Adjunct Assistant Professors Janos Sallai, Brian D. Sierawski

The electrical engineer has been primarily responsible for the information technology revolution that society is experiencing. The development of large-scale integrated circuits has led to the development of computers and networks of ever-increasing capabilities. Computers greatly influence the methods used by engineers for designing and problem solving.

The curricula of the electrical engineering and computer engineering majors are multifaceted. They provide a broad foundation in mathematics, physics, and computer science and a traditional background in circuit analysis and electronics. Several exciting areas of concentration are available, including microelectronics, computer systems, robotics and control systems, and signal processing. Double majors may be arranged with some programs, including biomedical engineering and mathematics. Students receive an education that prepares them for diverse careers in industry and government and for postgraduate education.

Undergraduate Honors Program. With faculty approval, junior and senior students may be accepted into the Honors Program. To achieve honors status, the student must:

1. achieve and maintain a minimum GPA of 3.5.
2. choose 6 hours of EE/CmpE program elective credit from among the following list:
 a. research-based independent study credit, or
 b. design domain expertise (DE) courses beyond the one course required by the program, or
 c. 5000-level courses.
3. complete 3 hours of research-based independent study credit (with final written report) in addition to all other requirements.

The diploma designation is Honors in Electrical Engineering.

Facilities. Electrical and computer engineering supports undergraduate laboratories emphasizing the principal areas of the disciplines: analog and digital electronics, microcomputers, microprocessors, microelectronics, and instrumentation. In addition, several specialized facilities are available for graduate research: the advanced carbon nanotechnology and diamond labs, the Institute for Software Integrated Systems, the Institute for Space and Defense Electronics, the Medical Image Processing Laboratory, the Center for Intelligent Systems and Robotics Laboratories, the Embedded Computer Systems Laboratory, and biomedical, biosensing, and photonics laboratories.

The work in electrical and computer engineering is supported by a variety of computers and networks, including the high-performance computing facilities of the Advanced Computing Center for Research and Education. Vanderbilt is one of the founding partners in the Internet II initiative.
Curriculum Requirements

NOTE: New course numbers took effect in fall 2015. Former course numbers are included in course descriptions in this catalog and at this website: registrar.vanderbilt.edu/faculty/course-renumbering/course-lookup/.

The B.E. in electrical engineering requires a minimum of 128 hours distributed as follows:

2. Basic Science (16 hours). Required courses: Chemistry 1601/1601L; Physics 1601/1601L, 1602/1602L; MSE 1500/1500L (or Chemistry 1602/1602L for some double majors).
3. Engineering Fundamentals (6 hours). Required courses: ES 1401, 1402, 1403, ES 2100W.
5. Electrical Engineering Core (24 hours). Required courses: CS 1101 or 1103; EECE 2112, 2116/2116L, 2213/2213L, 3214, 3233, 3235/3235L.
6. Electrical Engineering Electives (18 hours). Defined by a structure that includes the five Electrical Engineering Areas of Concentration listed below. Students must complete at least two courses in each of two concentration areas. Students must complete at least one approved design domain expertise (DE) course as designated below. Other EECE electives to total 18 hours.

Electrical Engineering Areas of Concentration

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 2218</td>
<td>EECE 4275</td>
<td>EECE 4252</td>
<td>EECE 4257</td>
<td>EECE 2252</td>
</tr>
<tr>
<td>EECE 4275</td>
<td>EECE 4283</td>
<td>EECE 4256</td>
<td>EECE 4257</td>
<td>EECE 4371 (DE)</td>
</tr>
<tr>
<td>EECE 4356 (DE)</td>
<td>EECE 4284</td>
<td>EECE 4353 (DE)</td>
<td>EECE 4354</td>
<td>EECE 4358 (DE)</td>
</tr>
<tr>
<td>EECE 4376 (DE)</td>
<td>EECE 4288</td>
<td>EECE 4355 (DE)</td>
<td>EECE 4356</td>
<td>ME 4271</td>
</tr>
<tr>
<td>EECE 4377 (DE)</td>
<td>EECE 4380 (DE)</td>
<td>CS 3258</td>
<td>EECE 4357</td>
<td></td>
</tr>
<tr>
<td>EECE 4385 (DE)</td>
<td>EECE 4386 (DE)</td>
<td>BME 3300</td>
<td>EECE 4364</td>
<td></td>
</tr>
<tr>
<td>CS 3274 (DE)</td>
<td>BME 3300</td>
<td>BME 3300</td>
<td>EECE 4371</td>
<td></td>
</tr>
<tr>
<td>ME 4271</td>
<td>BME 3600</td>
<td></td>
<td>EECE 4371</td>
<td></td>
</tr>
</tbody>
</table>

(DE) designates a Design Domain Expertise course

7. Liberal Arts Core (18 hours). To be selected to fulfill the Liberal Arts Core requirements listed in the Degree Programs in Engineering.

8. Technical electives (18 hours).
 a. (9–18 hours). At least 9 hours must be taken from this list of approved engineering technical electives.
 BME (except 2201, 3860, 3861)
 ChBE
 CE
 CS (except 1101, 1103, 1151)
 EEECE (above basic requirement in sections 5 and 6 above)
 ENGM 3010
 ME
 MSE (except 1500, 1500L)
 NANO 3000
 SC 3250, 3260

 b. (0–9 hours). Up to 9 hours may be taken from this list of optional technical electives.
 ENGM 2160, 2210, 3000, 3100, 3300, 3650, 4500
 MSE 1500, 1500L (if Chemistry 1602, 1602L is used for basic science requirement)

9. Open Elective (3 hours).

A double major in electrical engineering and biomedical engineering is offered as a unitary BME-EE curriculum, which is described in the Biomedical Engineering section of the catalog under its curriculum requirements. It requires a minimum of 129 semester hours.
Specimen Curriculum for Electrical Engineering

FRESHMAN YEAR †

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 2116 /2116L†</td>
<td></td>
</tr>
<tr>
<td>Digital Logic</td>
<td>4</td>
</tr>
<tr>
<td>Other freshman courses (see the engineering</td>
<td></td>
</tr>
<tr>
<td>freshman-year specimen curriculum)</td>
<td>14 12</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2300</td>
<td>3 –</td>
</tr>
<tr>
<td>Multivariable Calculus</td>
<td></td>
</tr>
<tr>
<td>Math 2400</td>
<td>– 4</td>
</tr>
<tr>
<td>Differential Equations with Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>Physics 1602</td>
<td>3 –</td>
</tr>
<tr>
<td>General Physics II</td>
<td></td>
</tr>
<tr>
<td>Physics 1602L</td>
<td>1 –</td>
</tr>
<tr>
<td>General Physics Laboratory II</td>
<td></td>
</tr>
<tr>
<td>CS 1101 or 1103 †</td>
<td>3 –</td>
</tr>
<tr>
<td>Programming and Problem Solving</td>
<td></td>
</tr>
<tr>
<td>EECE 2112</td>
<td>3 –</td>
</tr>
<tr>
<td>Circuits I</td>
<td></td>
</tr>
<tr>
<td>EECE 2213/2213L</td>
<td>– 4</td>
</tr>
<tr>
<td>Circuits II</td>
<td></td>
</tr>
<tr>
<td>Liberal Arts Core</td>
<td>3 3</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>– 6</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2810</td>
<td>– 3</td>
</tr>
<tr>
<td>Probability and Statistics for Engineering</td>
<td></td>
</tr>
<tr>
<td>ES 2100W</td>
<td>– 3</td>
</tr>
<tr>
<td>Technical Communications</td>
<td></td>
</tr>
<tr>
<td>EECE 3214</td>
<td>3 –</td>
</tr>
<tr>
<td>Signals and Systems</td>
<td></td>
</tr>
<tr>
<td>EECE 3233</td>
<td>3 –</td>
</tr>
<tr>
<td>Electromagnetics</td>
<td></td>
</tr>
<tr>
<td>EECE 3235/3235L</td>
<td>4 –</td>
</tr>
<tr>
<td>Electronics I</td>
<td></td>
</tr>
<tr>
<td>EE Program Electives ‡</td>
<td>– 9</td>
</tr>
<tr>
<td>Liberal Arts Core</td>
<td>3 3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>– 6</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 4950</td>
<td>3 –</td>
</tr>
<tr>
<td>Program and Project Management for EECE</td>
<td></td>
</tr>
<tr>
<td>EECE 4951</td>
<td>– 3</td>
</tr>
<tr>
<td>Electrical and Computer Engineering Design</td>
<td></td>
</tr>
<tr>
<td>EECE 4959</td>
<td>1 –</td>
</tr>
<tr>
<td>Senior Engineering Design Seminar</td>
<td></td>
</tr>
<tr>
<td>EE Program Electives ‡</td>
<td>6 3</td>
</tr>
<tr>
<td>Liberal Arts Core</td>
<td>– 3</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>6 3</td>
</tr>
<tr>
<td>Open elective</td>
<td>– 3</td>
</tr>
</tbody>
</table>

† Electrical engineering majors are encouraged to take EECE 2116 and EECE 2116L in the spring of their freshman year in lieu of CS 1101 or 1103, which may be taken in the sophomore year. CS 1101 is recommended over CS 1103 for electrical engineering majors; those who plan double majors should see their advisers.

‡ As described in Electrical Engineering Degree Requirements subsection 6. At least one design domain expertise (DE) course required prior to EECE 4951.

Course descriptions begin on page 325.
ENGINEERING SCIENCE MAJOR (BACHELOR OF SCIENCE)

The engineering science major is flexible and interdisciplinary, offering students the opportunity to select a program of study to meet special interests or objectives. Many students choose a program of study in engineering management, communication of science and technology, various engineering concentrations, environmental science or materials science; however, students may develop unique plans of study to specialize in areas for which facilities and faculty competence exist but which are not covered within a single existing degree program at Vanderbilt. Engineering science graduates may establish careers in engineering or science, interface with engineers (e.g., in marketing and sales), or use their analytical and problem-solving skills to build future professional careers.

After a year, meeting senior year requirements in engineering science. This reduces by one year the amount of time normally required to obtain the two degrees. Pursuit of the integrated program is contingent upon admission to the Owen School. Automatic admission is in no way implied, nor is special consideration given to engineering students. Further information may be obtained from the director of the Division of General Engineering.

Minors. Students may also pursue a minor consisting of at least five courses of at least three credit hours within a recognized area of knowledge. Minors are offered in engineering management, materials science and engineering, computer science, scientific computing, environmental engineering, energy and environmental systems, nanoscience and nanotechnology, and most disciplines within the College of Arts and Science. Students must declare their intention to pursue minors by completing forms available in the Office of Academic Services of the School of Engineering.

Curriculum Requirements

NOTE: New course numbers took effect in fall 2015. Former course numbers are included in course descriptions in this catalog and at this website: registrar.vanderbilt.edu/faculty/course-renumbering/course-lookup/.

Students must complete a minimum of 120 hours. In consultation with the academic adviser, each student must identify a program concentration containing a minimum of 27 hours, not counting certain introductory-level courses, which directly contributes to meeting stated career goals. The preparation provided by this 27-hour package, together with a solid foundation in basic engineering courses, provides the engineering science student with a strong and useful career base.

1. Basic science (16 hours). Chemistry 1601 and 1601L plus 12 hours from the group BSCI 1510/1510L, 1511/1511L; Chemistry 1602/1602L; Physics 1601/1601L, 1602/1602L; or MSE 1500/1500L with two courses in a single discipline.

3. Engineering (39 hours).
 a) Engineering Fundamentals (12 hours): CS 1101 or 1103; ES 1401, 1402, 1403, 2100W; ENGM 3700.
 b) Engineering Core (12 hours) to be selected from courses in any of the following disciplines: BME, ChBE, CE, CS, EECE, ENVE, MSE, ME, NANO, SC.
 c) Engineering electives (15 hours): Any Engineering School courses, including ENGM, may be used to complete the 39-hour engineering requirement.

4. Liberal Arts Core (18 hours). To be selected to fulfill the
6. Program concentration (27 hours). To be selected to provide a meaningful sequence of courses. Course work must be planned in advance and approved by the faculty adviser.

Course descriptions begin on page 330.

Engineering Management Minor

Engineering management is an interdisciplinary program of study designed to expose engineering students to the concepts and theories of the management of the engineering function, the critical elements of technology development and innovation, and the implementation of such ideas in manufacturing, engineering, and technology environments. Approximately two-thirds of all engineers spend a substantial portion of their professional careers as managers. In the complex, competitive world of technology-driven industry, skilled engineers who understand the essential principles of management and business have a competitive advantage.

The program in engineering management prepares students to work effectively in developing, implementing, and modifying technologies and systems. The ability to manage and administer large technical engineering and research projects and budgets will continue to challenge engineering management skills. Undergraduates interested in engineering management have two options. They may earn the B.E. in another engineering discipline with a minor in engineering management, or they may earn the B.S. in computer science or engineering science with engineering management as their area of concentration.

The engineering management minor is designed to provide a working knowledge of the fundamentals of management and innovation.

The minor program consists of 15 hours of course work, some of which may be taken as electives associated with the student’s major program. Five courses are required: four core courses and the remaining course chosen from a list of electives.

Program Requirements

The student must take the following four courses:

- **ENG 2160** Technology Strategy
- **ENG 2240** Applied Behavioral Science
- **ENG 3000** Enterprise Systems Design OR
- **ENG 3010** Systems Engineering
- **ENG 3700** Program and Project Management

The student must select one of the following courses:

- **ENG 2160** Engineering Economy
- **ENG 3100** Accounting and Finance for Engineers
- **ENG 3200** Technology Marketing
- **ENG 3300** Technology Assessment and Forecasting
- **ENG 3350** Organizational Behavior
- **ENG 3600** Technology-Based Entrepreneurship
- **ENG 3650** Operations and Supply Chain Management
- **ENG 4500** Product Development
- **ENG 4951** Engineering Management Capstone Project
- **CE 4300** Reliability and Risk Case Studies
- **ENVE 4305** Enterprise Risk Management

Course descriptions begin on page 329.

Materials Science and Engineering

DIRECTOR OF UNDERGRADUATE STUDIES Bridget R. Rogers

DIRECTOR OF GRADUATE STUDIES Eva Harth

PROFESSORS EMERITI Jimmy L. Davidson, Leonard C. Feldman, William F. Flanagan, George T. Hahn, Donald L. Kinser, Taylor G. Wang

PROFESSORS Weng Poo Kang, Robert A. Weller

ADJUNCT PROFESSOR James Bentley

ADJUNCT PROFESSOR Ashok Choudhury

ASSOCIATE PROFESSOR James E. Witting

ASSISTANT PROFESSORS Rizia Bardhan, Leon M. Bellan

PROFESSOR OF THE PRACTICE Amrutur V. Anilkumar

MATERIALS are the limiting factor for most technological advances. The impact of materials on history is obvious, since technological progress in a given era is demarcated by the available materials. The Stone Age was followed by the Bronze Age and the Iron Age. The present period could be identified as the Silicon Age, which is only in its first century.

New materials allow for new technology and this is especially the case for the emerging field of nanoscience. As the size scale approaches nanometer dimensions, materials exhibit new and exciting physical properties. High performance metals, ceramics, polymers, semiconductors and composites are in demand throughout the engineering world and nanotechnology is proving to be the answer for many engineering problems. The U.S. National Science Foundation identified nanoscience and nanotechnology as a critical area for our future and created a national initiative to advance the processing and performance of nanomaterials. To accomplish these tasks, there is a need for specialists in materials science and engineering with an interdisciplinary background that combines engineering disciplines with the physical sciences.

The materials science and engineering program is integrated into the extensive ongoing nanotechnology research. The Vanderbilt Institute for Nanoscience and Engineering (VINSE) is at the center of this effort. Research areas include: nanofluids, synthesis of semiconductor quantum dots, magnetic nanocrystals, nanoscale soft materials, optical properties of nanostructures, carbon nanotubes, nanodiamond devices, biological applications of nanocrystals, and molecular modeling and simulation of these nanoscale structures. This interdisciplinary research involves faculty from all of the engineering disciplines as well as faculty from chemistry, physics, and the medical school.

Two undergraduate options involving materials science and engineering are available. Students may pursue the B.S. in engineering science with materials science and engineering as their area of concentration or they may earn the B.E. in another engineering discipline with a minor in materials science and engineering.

Materials Science and Engineering Concentration

The B.S. in engineering science with a concentration in materials science and engineering requires satisfaction of the curriculum requirements of engineering science. The student must take 27 hours of materials science and engineering program electives that include MSE 1500 and MSE 2500 with the additional materials science related courses selected to provide a meaningful sequence that must be planned in advance and approved by the faculty adviser.
Materials Science and Engineering Minor

The minor in materials science and engineering is designated to provide the student with an understanding of engineering materials. The goal is to complement and add to the student's major in one of the other engineering disciplines for an interdisciplinary approach to problem solving. The minor program in materials science and engineering requires 16 hours of program courses, of which 7 hours are devoted to MSE 1500/1500L and MSE 2500. No more than 10 hours below the 2500 level may be applied to the minor.

Program Requirements

NOTE: New course numbers took effect in fall 2015. Former course numbers are included in course descriptions in this catalog and at this website: registrar.vanderbilt.edu/faculty/course-renumbering/course-lookup/.

- MSE 1500, 1500L Materials Science I and Laboratory
- MSE 2500 Materials Science II

The remaining 9 hours can be chosen from the following list of courses.

- MSE 3851 Undergraduate Research
- MSE 3889-3890 Special Topics
- BME 2100 Introductory Biomechanics
- BME 2200 Biomedical Materials: Structure, Property, and Applications
- BME 4200 Principles and Applications BioMicroElectroMechanical Systems (BioMEMS)
- BME 4500 Nanobiotechnology
- ChBE 4840 Applications of Metal and Metal Oxide Nanostructures
- ChBE 4850 Semiconductor Materials Processing
- ChBE 4860 Molecular Aspects of Chemical Engineering
- ChBE 4870 Polymer Science and Engineering
- ChBE 4880 Corrosion Science and Engineering
- CE 2205 Mechanics of Materials
- CE 3205 Introduction to Structural Design
- CE 4200 Advanced Structural Steel Design
- CE 4210 Advanced Reinforced Concrete Design
- CE 4211 Mechanics of Composite Materials
- EECE 4283 Principles and Models of Semiconductor Devices
- EECE 4284 Integrated Circuit Technology and Fabrication
- ME 3202 Machine Analysis and Design
- ME 4251 Modern Manufacturing Processes
- ME 4275 Introduction to Finite Element Analysis
- Chem 3010 Inorganic Chemistry
- Chem 3630 Macromolecular Chemistry: Polymers, Dendrimers, and Surface Modification
- Phys 2250W Introduction to Quantum Physics and Applications I
- Phys 2290 Electricity, Magnetism, and Electrodynamics
- Phys 3640 Physics of Condensed Matter

Course descriptions begin on page 331.
or higher. A formal written honors thesis on the candidate’s research must be approved by the honors adviser and the department chair. Honors candidates shall meet all Engineering School requirements in the nontechnical areas. The diploma designation is Honors in Mechanical Engineering.

Facilities. Facilities are available for studies in thermodynamics, combustion, heat power, refrigeration, air conditioning, fluid flow, heat transfer, design, mechanical vibrations, acoustics, robotics, instrumentation, and biomechanics. Water and wind tunnels are used in general fluid dynamics studies. Laser diagnostic equipment is available for studies of the fundamental behavior of combustion processes. These are augmented by special equipment for investigations into the mechanism of fluid turbulence. Instrumentation for conducting experiments on mechanical systems is available to measure accurately a wide range of variables. The department also maintains various shops for fabrication of experimental equipment and for instruction.

Curriculum Requirements

NOTE: New course numbers took effect in fall 2015. Former course numbers are included in course descriptions in this catalog and at this website: registrar.vanderbilt.edu/faculty/course-renumbering/course-lookup/.

The B.E. in mechanical engineering requires a minimum of 126 hours, distributed as follows:

2. Basic Science (16 hours). Required courses: Chemistry 1601/1601L, MSE 1500/1500L (or Chemistry 1602/1602L), Physics 1601/1601L, 1602/1602L.

3. Engineering Science (25 hours). Required courses: ES 1401, 1402, 1403; CE 2200, 2205; CS 1101 or CS 1103; EECE 2112; ME 2190, 2220, 3224, MSE 2205.

4. Liberal Arts Core (18 hours). To be selected to fulfill the Liberal Arts Core requirements listed in the Degree Programs in Engineering.

5. Open electives (6 hours).

6. ME core (26 hours). ME 2160, 2171, 3202, 3204, 3234, 3248, 4213, 4950, 4951, and 4959.

7. Technical electives (9 hours). To be selected from the following approved courses. Courses selected from the College of Arts and Science must be designated a Mathematics and Natural Sciences (MNS) course in the AXLE curriculum.
 a) Engineering courses except ENGM 2440, 3350, and CS 1151
 b) Math courses numbered 2420 or higher except Math 3000
 c) Chemistry course numbered 2000 or higher
 d) Physics courses numbered 2000 or higher
 e) Astronomy courses
 f) Biological Science courses
 g) Earth and Environmental Science courses
 h) Neuroscience courses

At least 3 hours must be numbered 2000 or above.

8. Professional (ME) depth (a minimum of 9 hours). Each student must choose at least 9 hours of ME elective courses.

No one-credit-hour ME course except 3841 can be used as a mechanical engineering elective. A maximum of three one-credit-hour ME courses may be used as technical electives. Additional ME one-credit-hour courses can be open electives. At least one "W"-designated course in the English language must be included on a graded basis.

Specimen Curriculum for Mechanical Engineering

<table>
<thead>
<tr>
<th>SOPHOMORE YEAR</th>
<th></th>
<th>Semester hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FALL</td>
<td>SPRING</td>
</tr>
<tr>
<td>ME 2160</td>
<td>Introduction to Mechanical Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>Math 2300</td>
<td>Multivariable Calculus</td>
<td>3</td>
</tr>
<tr>
<td>Math 2420</td>
<td>Methods of Ordinary Differential Equations</td>
<td>–</td>
</tr>
<tr>
<td>Physics 1602</td>
<td>General Physics II</td>
<td>3</td>
</tr>
<tr>
<td>Physics 1602L</td>
<td>General Physics Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>CE 2200</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>ME 2190</td>
<td>Dynamics</td>
<td>–</td>
</tr>
<tr>
<td>ME 2171</td>
<td>Instrumentation Laboratory</td>
<td>–</td>
</tr>
<tr>
<td>ME 2220</td>
<td>Thermodynamics</td>
<td>–</td>
</tr>
<tr>
<td>EECE 2112</td>
<td>Circuits I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts Core</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Semester hours</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FALL</td>
</tr>
<tr>
<td>JUNIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 3202</td>
<td>Machine Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td>ME 3204</td>
<td>Mechatronics</td>
<td>–</td>
</tr>
<tr>
<td>ME 3234</td>
<td>System Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>ME 3224</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ME 3248</td>
<td>Heat Transfer</td>
<td>–</td>
</tr>
<tr>
<td>CE 2205</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MSE 2205</td>
<td>Strength and Structure of Engineering Materials</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Elective</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Open Elective</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Math Elective</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>SENIOR YEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 4950</td>
<td>Design Synthesis</td>
<td>2</td>
</tr>
<tr>
<td>ME 4951</td>
<td>Design Projects</td>
<td>–</td>
</tr>
<tr>
<td>ME 4213</td>
<td>Energetics Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ME 4959</td>
<td>Senior Engineering Design Seminar</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Liberal Arts Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Elective</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Open Elective</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Course descriptions begin on page 331.
Nanoscience and Nanotechnology

DIRECTORS Paul E. Laibinis, Sandra J. Rosenthal

Affiliated Faculty

PROFESSORS Peter T. Cummings (Chemical and Biomolecular Engineering), Philippe M. Fauchet (Electrical Engineering), Daniel M. Fleetwood (Electrical Engineering), Kenneth F. Galloway (Electrical Engineering), Todd D. Giorgio (Biomedical Engineering), Richard F. Haglund, Jr. (Physics), Timothy P. Hanusa (Chemistry), Frederick R. Haselton (Biomedical Engineering), G. Kane Jennings (Chemical and Biomolecular Engineering), Weng P. Kang (Electrical Engineering), Paul E. Laibinis (Chemical and Biomolecular Engineering), M. Douglas LeVan (Chemical and Biomolecular Engineering), Charles M. Lukehart (Chemistry), Clare M. McCabe (Chemical and Biomolecular Engineering), Sokrates T. Pantelides (Physics), Peter N. Pintauro (Chemical and Biomolecular Engineering), Sandra J. Rosenthal (Chemistry), Ronald D. Schrimpf (Electrical Engineering), Norman H. Tok (Physics), John R. Wilkaw, Jr. (Physics), David W. Wright (Chemistry)

ASSOCIATE PROFESSORS David E. Cliffel (Chemistry), Scott A. Guelcher (Chemical and Biomolecular Engineering), Eva M. Harth (Chemistry), Deyu Li (Mechanical Engineering), Bridget R. Rogers (Chemical and Biomolecular Engineering), Florence Sanchez (Civil Engineering), Kaiman Varga (Physics), Greg Walker (Mechanical Engineering), Sharon M. Weiss (Electrical Engineering), James E. Witting (Materials Science and Engineering)

ASSISTANT PROFESSORS Rizia Bardhan (Chemical and Biomolecular Engineering), Leon Bellian (Mechanical Engineering), Kirill Bolotin (Physics), Craig L. Duvall (Biomedical Engineering), Janet E. MacDonald (Chemistry), Cary L. Pint (Mechanical Engineering), Jason G. Valentine (Mechanical Engineering), John T. Wilson (Chemical and Biomolecular Engineering), Yanfong Xu (Physics)

RESEARCH ASSOCIATE PROFESSOR Anthony B. Hmeolo (Physics)

RESEARCH ASSISTANT PROFESSORS Bo Choi (Electrical Engineering), Dmitry Koktysh (Chemistry), James R. McBride (Chemistry)

FACULTY in the School of Engineering and the College of Arts and Science offer an interdisciplinary minor in nanoscience and nanotechnology. The minor is administered by the School of Engineering.

Nanoscience and nanotechnology are based on the ability to synthesize, organize, characterize, and manipulate matter systematically at dimensions of ~1 to 100 nm, creating uniquely functional materials that differ in properties from those prepared by traditional approaches. At these length scales, materials can take on new properties that can be exploited in a wide range of applications such as for solar energy conversion, ultra-sensitive sensing, and new types of vaccines. These activities require the integration of expertise from various areas of science and engineering, often relying on methods of synthesis, fabrication, and characterization that are beyond those encountered in an individual course of study.

Students who minor in nanoscience and nanotechnology learn the principles and methods used in this rapidly growing field. Its core originates in the physical sciences by providing key approaches for describing the behavior of matter on the nanoscale. Synthetic approaches are used to manipulate matter systematically, for creating uniquely functional nanomaterials that can be inorganic, organic, biological, or a hybrid of these. With a third component of characterization, a process for designing systems to have particular properties as a result of their composition and nanoscale arrangement emerges. Students are introduced to these areas through foundational and elective courses for the minor that are specified below, the latter of which can be selected to fulfill the degree requirements for their major.

The minor in nanoscience and nanotechnology is supported by the Vanderbilt Institute of Nanoscale Science and Engineering (VINSE) that brings together faculty from the College of Arts and Science, the School of Engineering, and the Medical Center. A specialized laboratory facility maintained by VINSE provides students in the minor with capstone experiences that allow them to prepare and characterize a variety of nanostructured systems using in-house state-of-the-art instrumentation. This hands-on laboratory component enhances the attractiveness of students to both employers and graduate schools.

Nanoscience and Nanotechnology Minor

NOTE: New course numbers took effect in fall 2015. Former course numbers are included in course descriptions in this catalog and at this website: registrar.vanderbilt.edu/faculty/course-renumbering/course-lookup/.

The minor in nanoscience and nanotechnology requires a total of 15 credit hours, distributed as follows.

1. Chemistry 2610 or ChBE 4840 (3 hours)
2. Nanoscience and Nanotechnology 3000. (3 hours)
3. Physics 2660. (3 hours)
4. Elective courses. 6 hours selected from the following list of approved subjects.

 - BME 4200 Principles and Applications of BioMicro ElectroMechanical Systems (BioMEMS)
 - BME 4500 Nanobiotechnology
 - ChBE 4830 Molecular Simulation
 - ChBE 4840 Applications of Metal and Metal Oxide Nanostructures
 - ChBE 4850 Semiconductor Materials Processing
 - ChBE 4860 Molecular Aspects of Chemical Engineering
 - ChBE 4870 Polymer Science and Engineering
 - ChBE 4880 Corrosion Science and Engineering
 - CHEM 2610 Introduction to Nanochemistry
 - CHEM 3300 Physical Chemistry: Quantum Mechanics, Spectroscopy, and Kinetics
 - CHEM 3630 Macromolecular Chemistry: Polymers, Dendrimers, and Surface Modification
 - CHEM 5610 Chemistry of Inorganic Materials
 - EECE 4283 Principles and Models of Semiconductor Devices
 - EECE 4284 Integrated Circuit Technology and Fabrication
 - EECE 4288 Optoelectronics
 - EECE 4385 VLSI Design
 - EECE 6306 Solid-State Effects and Devices
 - IMS 5320 Nanoscale Science and Engineering
 - ME 8320 Statistical Thermodynamics
 - ME 8323 Introduction to Micro/Nanoloelectromechanical Systems
 - ME 8365 Micro/Nanoscale Energy Transport
 - MSE 6310 Atomic Arrangements in Solids
 - PHYS 2250 Introduction to Quantum Dynamics and Applications I
 - PHYS 3640 Physics of Condensed Matter

Courses taken to satisfy relevant degree requirements for majors in the College of Arts and Science and the School of Engineering may also be counted toward fulfilling the minor.
School of Engineering / Scientific Computing

Scientific Computing

DIRECTORS Robert E. Bodenheimer, Thomas J. Palmeri, David A. Weintraub

Affiliated Faculty

PROFESSORS Ralf Bennartz (Earth and Environmental Sciences), Gautam Biswas (Electrical Engineering and Computer Science), Mario Crucini (Economics), Peter T. Cummings (Chemical and Biomolecular Engineering), Mark N. Elbingham (Mathematics), David Furbish (Earth and Environmental Sciences), Guilherme Gualda (Earth and Environmental Sciences), Gordon D. Logan (Psychology), Terry P. Lybrand (Chemistry and Pharmacology), Charles F. Maguire (Physics), Clare M. McCabe (Chemical and Biomolecular Engineering), Mark Neamtu (Mathematics), Jeffrey D. Schall (Psychology and Neuroscience), Larry Schumaker (Mathematics), Paul Sheldon (Physics), David A. Weintraub (Astronomy), Robert Weller (Electrical Engineering)

ASSOCIATE PROFESSORS Robert E. Bodenheimer (Computer Science), Shane Hutson (Physics), Haoxiang Luo (Mechanical Engineering), Jens Meiler (Chemistry), Michael I. Miga (Biomedical Engineering), Thomas J. Palmeri (Psychology and Neuroscience), Antonis Rokas (Biological Sciences), Greg Walker (Mechanical Engineering), Steve Wenke (Anthropology)

ASSISTANT PROFESSORS Andreas A. Berlind (Astronomy), Kelly Holley-Bockelmann (Astronomy) Tony Capra (Biological Sciences and Biomedical Informatics), Bennett Landman (Electrical Engineering), Sean Polyn (Psychology and Neuroscience), Kalman Varga (Physics)

ASSOCIATE PROFESSOR OF THE PRACTICE Gerald H. Roth (Computer Science)

LECTURER Zhiao Shi (ACCRE)

FACULTY in the School of Engineering and the College of Arts and Science offer an interdisciplinary minor in scientific computing to help natural and social scientists and engineers acquire the ever-increasing computational skills that such careers demand. The minor is administered by the School of Engineering. Students who complete this minor will have a toolkit that includes programming skills useful for simulating physical, biological, and social dynamics, as well as an understanding of how to take advantage of modern software tools to extract meaningful information from small and large datasets.

Computation is now an integral part of modern science and engineering. In science, computer simulation allows the study of natural phenomena impossible or intractable through experimental means. In engineering, computer simulation allows the analysis and synthesis of systems too expensive, dangerous, or complex to model and build directly. Astronomers studying the formation of massive black holes, neuroscientists studying neural networks for human memory, mechanical engineers studying the designs of turbines and compressors, and electrical engineers studying the reliability of electronics aboard spacecraft are united both in the computational challenges they face and the tools and techniques they use to solve these challenges.

Students in the program in scientific computing are taught techniques for understanding such complex physical, biological, and also social systems. Students are introduced to computational methods for simulating and analyzing models of complex systems, to scientific visualization and data mining techniques needed to detect structure in massively large multidimensional data sets, to high performance computing techniques for simulating models on computing clusters with hundreds or thousands of parallel, independent processors and for analyzing terabytes or more of data that may be distributed across a massive cloud or grid storage environment.

Scientific computing at Vanderbilt is supported by faculty and includes students from a wide range of scientific and engineering disciplines. While the content domain varies, these disciplines often require similar computational approaches, high-performance computing resources, and skills to simulate interactions, model real-life systems, and test competing hypotheses. Scientific computing embodies the computational tools and techniques for solving many of the grand challenges facing science and engineering today.

The minor in scientific computing prepares students for advanced coursework that combines computational approaches with a substantive area of science or engineering. It prepares students for directed or independent study with a faculty member on a research project. It prepares students for advanced study in graduate school. It provides skills that will be attractive to many employers after graduation.

The minor in scientific computing is distinct from the minor in computer science. Scientific computing uses computation as a tool to solve scientific and engineering problems in research and application. It is more focused on simulation, numerical techniques, high performance computing, and higher-level methods than the minor in computer science, which is focused on the algorithms, systems, and technologies that enable such methods to be developed and employed.

Scientific Computing Minor

NOTE: New course numbers took effect in fall 2015. Former course numbers are included in course descriptions in this catalog and at this website: registrar.vanderbilt.edu/faculty/course-renumbering/course-lookup/.

The minor in scientific computing requires 15 credit hours, distributed as follows:

1. Computer Science 1101 or 1103. (3 hours)
2. Computer Science 2204 (CS 2201 may be substituted for 2204 with the approval of a program director). (3 hours)
3. Scientific Computing 3250. (3 hours)
4. 6 hours of electives. Electives include courses in the Scientific Computing (SC) minor, courses approved for SC credit that are in another subject area, courses that meet the approval of a Director of the SC minor, and directed or independent study with a faculty member affiliated with the SC minor.

SC 3260 High Performance Computing
SC 3890 Special Topics in Scientific Computing. [1-3 each semester]
SC 3841 Directed Study in Scientific Computing
SC 3842 Directed Study in Scientific Computing
SC 3843 Directed Study in Scientific Computing
SC 3851 Independent Study in Scientific Computing
SC 3852 Independent Study in Scientific Computing
SC 3853 Independent Study in Scientific Computing

Approved courses by subject area are listed below. These courses either provide a detailed treatment of a core scientific computing tool and technique or combine scientific computing tools and techniques with a substantive area of science or engineering.

Anthropology 3261 Introduction to Geographic Information Systems and Remote Sensing
Astronomy 3600 Stellar Astrophysics
Astronomy 3700 Galactic Astrophysics
Astronomy 8050 Structure Formation in the Universe
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences 3273</td>
<td>Genome Science</td>
</tr>
<tr>
<td>BME 4310</td>
<td>Modeling Living Systems for Therapeutic Bioengineering</td>
</tr>
<tr>
<td>ChBE 4830</td>
<td>Molecular Simulation</td>
</tr>
<tr>
<td>Chemistry 5410</td>
<td>Molecular Modeling Methods</td>
</tr>
<tr>
<td>Chemistry 5420</td>
<td>Computational Structure and Chemical Biology</td>
</tr>
<tr>
<td>CS 3274</td>
<td>Modeling and Simulation</td>
</tr>
<tr>
<td>Economics 3050</td>
<td>Introduction to Econometrics</td>
</tr>
<tr>
<td>Mathematics 3620</td>
<td>Introduction to Numerical Mathematics</td>
</tr>
<tr>
<td>Mathematics 3630</td>
<td>Mathematical Modeling in Biology</td>
</tr>
<tr>
<td>Mathematics 3660</td>
<td>Mathematical Modeling in Economics</td>
</tr>
<tr>
<td>Mathematics 4620</td>
<td>Linear Optimization</td>
</tr>
<tr>
<td>Mathematics 4630</td>
<td>Nonlinear Optimization</td>
</tr>
<tr>
<td>ME 4263</td>
<td>Computational Fluid Dynamics and Multiphysics Modeling</td>
</tr>
<tr>
<td>Physics 2237</td>
<td>Computational Physics</td>
</tr>
<tr>
<td>Physics 3207</td>
<td>Computational Thermodynamics and Statistical Physics</td>
</tr>
<tr>
<td>Psychology 8218</td>
<td>Computational Modeling</td>
</tr>
<tr>
<td>Psychology 8219</td>
<td>Scientific Computing for Psychological and Brain Sciences</td>
</tr>
<tr>
<td>Psychology 8503</td>
<td>Models of Human Memory</td>
</tr>
</tbody>
</table>
Engineering Courses

Biomedical Engineering

BME 2100. Introductory Biomechanics. [Formerly BME 101] Structure and mechanics of the musculoskeletal system and to the properties and strength of biological materials. Application of Newtonian mechanics, statics, and strength of materials to bone, muscle, tendon, other biological material, and medical devices. Credit offered for only one of BME 2100 or CE 2200. Prerequisite: PHYS 1601, MATH 1301, and CS 1103. FALL. [3]

BME 2200. Biomedical Materials: Structure, Property, and Applications. [Formerly BME 103] Structure-property relationships in both natural and synthetic, hard and soft materials. Bio-inspired materials design, the role of self-assembly in achieving highly ordered structures, material design and properties for emerging biomedical applications, factors influencing biocompatibility, performance of biomaterials in both soft and hard tissues, and biological response to implants. Prerequisite: Chem 1602, BME 2100. SPRING. [3]

BME 2201. Biomedical Engineering Ethics. [Formerly BME 201] Ethical principles in the practice of biomedical engineering: responsibility in professional practice, health care, research and mentoring. Development of skills in perceptiveness, discernment, competency and visualization of alternatives through case studies. Prerequisite: Junior or senior standing. FALL. [3] (Only available for open elective credit for biomedical engineering majors.) (Not currently offered)

BME 3000. Physiological Transport Phenomena. [Formerly BME 210] An introduction to the mechanics of fluids, heat transfer, and mass transfer in living systems. Basic theories of transport phenomena are presented and applied to mammalian and cellular physiology as well as to the design of medical devices. Prerequisite: BME 2100, 2200 or equivalent, MATH 2400 or 2420. [3]

BME 3200. Analysis of Biomedical Data. [Formerly BME 260] Application of modern computing methods to the statistical analysis of biomedical data. Sampling, estimation, analysis of variance, and the principles of experimental design and clinical trials are emphasized. Prerequisite: MATH 2300. SPRING. [3]

BME 3300. Biomedical Instrumentation. [Formerly BME 271] Introduces methods used to determine physiological functions and variables from the point of view of optimization in the time and frequency domain and the relation to physiological variability. Laboratory exercises stress instrumentation usage and data analysis. Three lectures and one laboratory. Prerequisite: EEC 2213 and 2213L. FALL, SPRING. [4]

BME 3600. Signal Measurement and Analysis. [Formerly BME 263] Discrete time analysis of signals with deterministic and random properties and the effect of linear systems on these properties. Brief review of relevant topics in probability and statistics and introduction to random processes. Discrete Fourier transforms, harmonic and correlation analysis, and signal modeling. Implementation of these techniques on a computer is required. Corequisite: BME 3200 or MATH 2810. SPRING. [3]

BME 3830. Biomedical Engineering Service Learning and Leadership. [Formerly BME 249] Identification of local and global human needs, methods of need quantification, implementation of engineering solutions, sustainability, preparation of grant proposals, leadership principles, independent service project required. Prerequisite: Junior standing. FALL. [3]

BME 3860. Undergraduate Research. [Formerly BME 240A] Independent research, either experimental or theoretical in nature or a combination of both, under the supervision of a biomedical engineering faculty member or another faculty member approved by the course director. Prerequisite: Consent of course director. [1-3 each semester; maximum of 6 hours total for all semesters of BME 3860 and 3861.]

BME 3861. Undergraduate Research. [Formerly BME 240B] A continuation of the research in 3860 or research in a different area of biomedical engineering. Prerequisite: Consent of course director. [1-3 each semester; maximum of 6 hours total for all semesters of BME 3860 and 3861.]

BME 3890. Special Topics. [Formerly BME 290A] Different topics taught. [3] (Offered periodically)

BME 3891. Special Topics. [Formerly BME 290B] Different topics taught. [3] (Offered periodically)

BME 3892. Special Topics. [Formerly BME290C] Different topics taught. [3] (Offered periodically)

BME 3893. Special Topics. [Formerly BME 290D] Different topics taught. [3] (Offered periodically)

BME 4000. Bioelectricity. [Formerly BME 256] Cellular basis of the electrical activity of nerve and muscle cells; action potential propagation; voltage- and ligand-gated ion channels; space, voltage, and patch clamp; and electrical, optical, and magnetic measurements of bioelectric activity in cells, isolated tissues, intact animals, and humans. Prerequisite: MATH 2400 or 2420, BSCI 1510. FALL. [3]

BME 4200. Principles and Applications of BioMicroElectroMechanical Systems (BioMEMS). [Formerly BME 274] The principles, design, fabrication and application of micro- and nano-devices to instrument and control biological molecules, living cells, and small organisms, with a strong emphasis on development of microfabricated systems and
micro- and nano-biosensors. Students will lead discussions from the research literature. Graduate students will prepare a research proposal or fabricate a functioning BioMEMS device. FALL. [3]

BME 4300. Therapeutic Bioengineering. [Formerly BME 275] Explores the engineering aspects of treating disease or disorders. Surgical mechanics, diffusion therapies including chemical and energy diffusion, image-guided therapies, and the role of discovery and design in the development of medical treatments. Prerequisite: EECE 2213, BME 3000. Corequisite: BME 2100, BME 3300. SPRING. [3]

BME 4310. Modeling Living Systems for Therapeutic Bioengineering. [Formerly BME 279] Introduction to computer modeling and simulation in therapeutic bioengineering processes. Building computer models and using modern modeling software tools. Introduction to numerical techniques to solve differential equations and origin of mathematical models for bionanotransport, biomechanics, tumor/virus growth dynamics, and model-based medical imaging techniques. Prerequisite: MATH 2400 or MATH 2420, CS 1103 or equivalent, BME 2100 or equivalent mechanics course. SPRING. [3]

BME 4400. Foundations of Medical Imaging. [Formerly BME 258] Physics and engineering of image formation by different modalities used for medical applications. Concepts common to different imaging modalities and limits of physical phenomena. Mathematical concepts of image formation and analysis; techniques for recording images using ionizing radiation (including CT), ultrasound, magnetic resonance, and nuclear (including SPECT and PET). Methods of evaluating image quality. Prerequisite: PHYS 1602, 1602L, MATH 2400. Credit offered for only one of BME 4400 and PHYS 2805. SPRING. [3]

BME 4410. Biological Basis of Imaging. [Formerly BME 276] Physical and chemical relationships between biological characteristics of tissue and image contrast in major medical imaging modalities. Imaging modalities include x-ray, MRI, PET, and ultrasound. Applications include neurological disorders, neurological function, cardiac function and disease, cancer, and musculoskeletal physiology. Prerequisite: BME 4400 or equivalent. SPRING. [3]

BME 4420. Quantitative and Functional Imaging. [Formerly BME 277] Introduction to quantitative analysis of non-invasive imaging techniques to assess the structure and function of tissues in the body. Applications of computed tomography, positron emission tomography, ultrasound, and magnetic resonance imaging to tissue characterization. Measurement of lesion volume, cardiac output, organ perfusion, brain function, and receptor density. Prerequisite: BME 4400 and CS 1103 or equivalent. FALL. [3]

BME 4500. Nanobiotechnology. [Formerly BME 281] Synthesis and characterization of nanostructured materials for use in living systems. Clinical applications of nanoparticle biosensors. Methods for single molecule detection in biological specimens. Quantitative structure/function assessment of nanostructures in living systems. Prerequisite: BSCI 1510; BME 3000 or CHBE 3300 or ME 3224. SPRING. [3]

BME 4600. Introduction to Tissue Engineering. [Formerly BME 280] Basic principles, methods, and current topics in tissue engineering. Integration of biology, materials science, and biomechanics in the design and fabrication of engineered tissues. Biomaterials for scaffold- ing, stem cell applications, bioreactor design, and practical methods for testing. Case studies and guest lectures from experts in the field. Prerequisite: BSCI 1510; CHEM 1602 or equivalent. FALL. [3]

BME 4900W. Biomedical Engineering Laboratory. [Formerly BME 255W] Laboratory experiments in biomechanics, thermodynamics, biological transport, signal analysis, biological control, and biological imaging. Emphasis is on current methods, instrumentation, and equipment used in biomedical engineering; on oral presentation of results; and on the writing of comprehensive reports. One lecture and one three-hour laboratory per week. Prerequisite: BME 3100. Corequisite: BME 3000. [3]

BME 4950. Design of Biomedical Engineering Devices and Systems I. [Formerly BME 272] Integration of the engineering and life science backgrounds of senior biomedical engineering students through the presentation of design principles for medical devices and systems. Design principles and case examples for biomedical electronics, mechanical, chemical, and computing systems are presented. A full-semester design project is required. Evaluation is conducted through periodic oral and written presentations, and through a final written and poster report. Corequisite: BME 3300. Prerequisite: BME 3100. [2]

BME 4951. Design of Biomedical Engineering Devices and Systems II. [Formerly BME 273] Integration of the engineering and life science backgrounds of senior biomedical engineering students through the presentation of design principles for medical devices and systems. Design principles and case examples for biomedical electronics, mechanical, chemical, and computing systems are presented. A full-semester design project is required. Evaluation is conducted through periodic oral and written presentations, and through a final written and poster report. Prerequisite: BME 4950. [3]

BME 4959. Senior Engineering Design Seminar. [Formerly BME 297] Elements of professional engineering practice. Professionalism, licensing, ethics and ethical issues, intellectual property, contracts, liability, risk, reliability and safety, interdisciplinary teams and team tools, codes, standards, professional organizations, careers, entrepreneurship, human factors, and industrial design. Prerequisite: Senior standing. Required, to be taken in conjunction with BME 4950. FALL. [1]

BME 5100. Lasers in Surgery and Medicine. (Also listed as BME 4100) Fundamentals of lasers, light-tissue interaction, problem-based design of optical instrumentation. Applications in laser surgery, disease detection, and surgical guidance. Includes hands-on experiences. No credit for students who have earned credit for BME 4100. FALL. [3]

BME 5110. Neuromuscular Mechanics and Physiology. (Also listed as BME 3110) Quantitative characterization of the physiological and mechanical properties of the neuromuscular system. Quantitative models of system components. Applications to fatigue, aging and development, injury and repair, and congenital and acquired diseases. No credit for students who have earned credit for BME 3110. SPRING. [3]

BME 5130. Systems Physiology. (Also listed as BME 3100) An introduction to quantitative physiology from the engineering point of view. Descriptive physiology of several organ systems (nervous, musculoskeletal, cardiovascular, gastrointestinal). Mathematical modeling and computer simulation of organ systems and physiologic control mechanisms. No credit for students who have earned credit for BME 3100. FALL. [3]

BME 5131. Systems Physiology. (Also listed as BME 3101) An introduction to quantitative physiology from the engineering point of view. Descriptive physiology of several organ systems (blood, immune, endocrine, respiratory, renal, reproductive). Mathematical modeling and computer simulation of organ systems and physiologic control mechanisms. No credit for students who have earned credit for BME 3101. SPRING. [3]

BME 5200. Principles and Applications of BioMicro ElectroMechanical Systems (BioMEMS). (Also listed as BME 4200) The principles, design, fabrication and application of micro- and nano-devices to instrument and control biological molecules, living cells, and small organisms, with a strong emphasis on development of microfabricated systems and micro- and nano-biosensors. Students will lead discussions from the research literature. Graduate students will prepare a research proposal for testing. Case studies and guest lectures from experts in the field. Prerequisite: BSCI 1510; CHEM 1602 or equivalent. FALL. [3]
or fabricate a functioning BioMEMS device. No credit for students who have earned credit for BME 4200. FALL. [3]

BME 5210. Biomaterial Manipulation. (Also listed as BME 2210) Design and characterization of biomaterials. Assessment of tissue engineering scaffolds and nanoparticles. Manipulation of cell growth and expression. Application of mechanics and materials principles to medical and consumer products. Laboratory exercises in tissue culture, microscopy, mechanical testing, biochemical assays, and computer modeling. No credit for students who have earned credit for BME 2210. Corequisite: BME 2200. SPRING. [3]

BME 5300. Biomedical Instrumentation. (Also listed as BME 3300) Introduces methods used to determine physiological functions and variables from the point of view of optimization in the time and frequency domain and the relation to physiological variability. Laboratory exercises stress instrumentation usage and data analysis. Three lectures and one laboratory. No credit for students who have earned credit for BME 3300. FALL, SPRING. [4]

BME 5301. Therapeutic Bioengineering. (Also listed as BME 4300) Explores the engineering aspects of treating disease or disorders. Surgical mechanics, diffusion therapies including chemical and energy diffusion, image-guided therapies, and the role of discovery and design in the development of medical treatments. No credit for students who have earned credit for BME 4300. SPRING. [3]

BME 5400. Foundations of Medical Imaging. (Also listed as BME 4400) Physics and engineering of image formation by different modalities used for medical applications. Concepts common to different imaging modalities and limits of physical phenomena. Mathematical concepts of image formation and analysis; techniques for recording images using ionizing radiation (including CT), ultrasound, magnetic resonance, and nuclear (including SPECT and PET). Methods of evaluating image quality. No credit for students who have earned credit for BME 4400. SPRING. [3]

BME 5410. Biological Basis of Imaging. (Also listed as BME 4410) Physical and chemical relationships between biological characteristics of tissue and image contrast in major medical imaging modalities. Imaging modalities include x-ray, MRI, PET, and ultrasound. Applications include neurological disorders, neurological function, cardiac function and disease, cancer, and musculoskeletal physiology. No credit for students who have earned credit for BME 4410. SPRING. [3]

BME 5420. Advanced Quantitative and Functional Imaging. (Formerly BME 377) Analysis of non-invasive image data to assess tissue structure and function in the body. Modeling and parameter estimation based on medical imaging data. Measurements of tissue volume, fiber structure, blood flow, brain function, and receptor density. No credit for both BME 4420 and 5420. FALL. [3]

BME 5500. Nanobiotechnology. (Also listed as BME 4500) Synthesis and characterization of nanostructured materials for use in living systems. Clinical applications of nanoscale biosensors. Methods for single molecule detection in biological specimens. Quantitative structure/function assessment of nanostructures in living systems. No credit for students who have earned credit for BME 4500. SPRING. [3]

BME 5600. Signal Measurement and Analysis. (Also listed as BME 3600) Discrete time analysis of signals with deterministic and random properties and the effect of linear systems on these properties. Brief review of relevant topics in probability and statistics and introduction to random processes. Discrete Fourier transforms, harmonic and correlation analysis, and signal modeling. Implementation of these techniques on a computer is required. No credit for students who have earned credit for BME 3600. SPRING. [3]

BME 5950. Design of Biomedical Engineering Devices and Systems I. (Also listed as BME 4950) Integration of the engineering and life science backgrounds of senior biomedical engineering students through the presentation of design principles for medical devices and systems. Design principles and case examples for biomedical electronics, mechanical, chemical, and computing systems are presented. A full-semester design project is required. Evaluation is conducted through periodic oral and written presentations, and through a final written and poster report. Corequisite: BME 5300. No credit for students who have earned credit for BME 4950. [2]

BME 5951. Design of Biomedical Engineering Devices and Systems II. (Also listed as BME 4951) Integration of the engineering and life science backgrounds of senior biomedical engineering students through the presentation of design principles for medical devices and systems. Design principles and case examples for biomedical electronics, mechanical, chemical, and computing systems are presented. A full-semester design project is required. Evaluation is conducted through periodic oral and written presentations, and through a final written and poster report. No credit for students who have earned credit for BME 4951. [3]

BME 6110. Research and Professional Development in Biomedical Engineering. (Formerly BME 305) Database search strategies, interpreting engineering and scientific literature, communication skills, engineering design, proposal writing, preparation of engineering publications, technology transfer/intellectual property, engineering laboratory documentation, regulatory oversight, ethics, funding. SPRING. [3]

BME 7110. Laser-Tissue Interaction and Therapeutic Use of Lasers. (Formerly BME 320) Optical and thermal aspects and models of the interaction between laser/light and biological tissue as it is used for therapeutic applications in medicine and biology. Issues and objectives in therapeutic and surgical applications of lasers, overview of state-of-the-art topics and current research. FALL. [3]

BME 7120. Optical Diagnosis: Principles and Applications. (Formerly BME 321) Applications of light and tissue optical properties for the diagnosis of tissue pathology. Basic scientific and engineering principles for developing techniques and devices that use light to probe cells and tissues. Recent applications of different optical diagnostic techniques. SPRING. [3]

BME 7310. Advanced Computational Modeling and Analysis in Biomedical Engineering. (Formerly BME 329) Survey of current topics within biomedical modeling: biotransport, biomechanics, tumor and virus growth dynamics, model-based medical imaging techniques, etc. Mathematical development and analysis of biomedical simulations using advanced numerical techniques for the solution of ordinary and partial differential equations. Emphasis will be on graduate research related topics. SPRING. [3]

BME 7410. Quantitative Methods in Biomedical Engineering. (formerly BME 300) Mathematics, quantitative analysis, and computational methods for biomedical engineering applications. Topics include applied probability and statistics, signal analysis and experiment design, linear systems, Fourier transforms, and numerical modeling and analysis. FALL. [3]

BME 7413. Advanced Biomechanics. (Formerly BME 313) Application of advanced concepts in statics, dynamics, continuum mechanics, and strength of materials to biological systems. Topics include measurement of mechanical properties of biological materials; rheological properties of blood; mechanics of cells, bone, skeletal muscle, and soft tissue; normal and abnormal dynamics of human movement; mechanics of articular joint movement; pulmonary mechanics; cardiac mechanics; arterial mechanics; mechanics of veins and collapsible vessels; and mechanics of flow in the microcirculation. Prerequisite: BME 2100, BME 3000 or equivalent. [3]

BME 7419. Engineering Models of Cellular Phenomena. (Formerly BME 319) Application of engineering methods to model and quantify aspects of cell physiology. Topics include receptor mediated cell processes, cell-cell signaling, cooperative barrier behavior, cell structural components, and cell motility. SPRING. [3] (Offered alternate years)

BME 7420. Magnetic Resonance Imaging Methods. (Formerly BME 378) MR techniques to image tissue for clinical evaluation and research. RF pulses, k-space trajectories, chemical shift, motion, flow, and relaxation. Derivation of signal equations for pulse sequence design and analysis. Course includes hands-on experimental studies. SPRING. [3]

BME 7425. Physical Measurements on Biological Systems. (Formerly BME 325) A survey of the state-of-the-art in quantitative physical
measurement techniques applied to cellular or molecular physiology. Topics include the basis for generation, measurement, and control of the transmembrane potential; electrochemical instrumentation; optical spectroscopy and imaging; x-ray diffraction for determination of macromolecular structure; magnetic resonance spectroscopy and imaging. Prerequisite: PHYS 2250. SPRING. [3]

BME 7430. Cancer Imaging. [Formerly BME 330] Applications of noninvasive, in vivo imaging (i.e., MRI, optical, CT, SPECT, PET, and ultrasound) to cancer biology. Emphasis on assessing the response of tumors to treatment using emerging and quantitative imaging techniques. Prerequisite: BME 4400 or PHYS 2805. SPRING. (Offered alternate years) [3]

BME 7440. Neuroimaging. [Formerly BME 331] Applications of noninvasive imaging techniques including MRI, fMRI, optical, EEG, and PET to the study of neural systems. Emphasis on the human brain, with a focus on recent scientific literature. Prerequisite: BME 4400 or PHYS 2805. FALL. (Offered alternate years) [3]

BME 7473. Design of Medical Products, Processes, and Services. [Formerly BME 373] Medical design projects involving teams of graduate level engineering and management students. Projects are solicited from industry or universities and are undertaken from the initial phase of a design request to the product, prototype, plan, or feasibility analysis. Prerequisite: BME 4950 or equivalent. SPRING. [3]

BME 7500. Independent Study in Biomedical Engineering. [Formerly BME 390] Study of advanced biomedical engineering topics not regularly offered in the curriculum. Consent of instructor is required. FALL, SPRING. [3]

BME 7899. Master of Engineering Project. [Formerly BME 389]
BME 7999. Master’s Thesis Research. [Formerly BME 369]

BME 8900. Special Topics. [Formerly BME 395A] Different topics taught at graduate level. [1-3]
BME 8901. Special Topics. [Formerly BME 395B] Different topics taught at graduate level. [1-3]
BME 8902. Special Topics. [Formerly BME 395C] Different topics taught at graduate level. [1-3]
BME 8903. Special Topics. [Formerly BME 395D] Different topics taught at graduate level. [1-3]
BME 8991. Biomedical Research Seminar. [Formerly BME 391] [1]
BME 8992. Biomedical Research Seminar. [Formerly BME 392] [1]
BME 8993. Biomedical Research Seminar. [Formerly BME 393] [1]
BME 8994. Biomedical Research Seminar. [Formerly BME 394] [1]
BME 8999. Non-Candidate Research. [Formerly BME 379] Research prior to entry into candidacy (completion of qualifying examination) and for special non-degree students. [Variable credit: 0-12]
BME 9999. Ph.D. Dissertation Research. [Formerly BME 399]

Chemical and Biomolecular Engineering
CHBE 2100. Chemical Process Principles. [Formerly CHBE 161] A foundation for advanced work in chemical engineering. Process problems of a chemical and physico-chemical nature are considered. Emphasis is on stoichiometry, material balances, and energy balances required for design computation. FALL. [3]

CHBE 2150. Molecular and Cell Biology for Engineers. [Formerly CHBE 220] Basic molecular and cellular biology principles and concepts. Application of engineering principles to further the understanding of biological systems. Protein structure and function, transcription, translation, post-translational processing, cellular organization, molecular transport and trafficking, and cellular models. Credit given for only one of CHBE 2150 or BSCI 1510. Prerequisite: CHEM 1602. FALL. [3]

CHBE 2200. Chemical Engineering Thermodynamics. [Formerly CHBE 162] Application of the laws of thermodynamics to chemical engineering systems. Entropy balances and analysis of thermodynamic cycles. Methods of estimating thermodynamic properties of pure fluids and mixtures, including equations of state, to provide background for chemical process design and simulation. SPRING. [3]

CHBE 3200. Phase Equilibria and Stage-Based Separations. [Formerly CHBE 223] Thermodynamic principles and calculations of mixture phase equilibrium. Development of correlations to design chemical separation processes. Applications to separation processes involving gases, liquids, and solids such as distillation, adsorption, and extraction. Simulation of separation processes. Prerequisite: CHBE 2200, CHBE 2250. FALL. [3]

CHBE 3250. Chemical Reaction Engineering. [Formerly CHBE 225] Thermodynamic basis of chemical equilibrium. Analysis of chemical kinetic data and application to the design of chemical reactors. Batch, semibatch, and flow reactors are considered in both steady-state and transient operation. Brief treatments of catalysis and physical and chemical adsorption. Prerequisite: CHEM 2211 or 2221; CHBE 3200. SPRING. [3]

CHBE 3350. Mass Transfer and Rate-Based Separations. [Formerly CHBE 231] Principles of mass transfer and their application to the analysis of chemical and biological engineering systems. Design of rate-based separation operations. Prerequisite: CHBE 3300. SPRING. [3]

CHBE 3860. Chemical Engineering Projects. [Formerly CHBE 246] Opportunities for individual students to do research or design work under guidance of a faculty member. Requires faculty sponsorship of the project. [Variable credit: 1-3 each semester]

CHBE 3861. Chemical Engineering Projects. [Formerly CHBE 247] Opportunities for individual students to do research or design work under guidance of a faculty member. Requires faculty sponsorship of the project. [Variable credit: 1-3 each semester]

CHBE 3890. Special Topics. [Formerly CHBE 290] Prerequisite: consent of instructor. [Variable credit: 1-3 each semester] (Offered on demand)

CHBE 3900W. Chemical Engineering Laboratory 1. [Formerly CHBE 228W] Laboratory experiments in momentum, energy and mass transport, thermodynamics, and separations, focusing on instrumentation and unit operations. Statistical treatment of data, error analysis, written reports, and oral presentations are emphasized. Two lecture hours and one 5-hour laboratory per week. Prerequisite: CHBE 3200, CHBE 3300. Corequisite: CHBE 3350. SPRING. [4]

CHBE 4500. Bioprocess Engineering. [Formerly CHBE 283] Application of cellular and molecular biology to process engineering to describe the manufacture of products derived from cell cultures. Design and scale-up of bioreactors and separation equipment. Metabolic and protein engineering utilizing genetically engineered organisms. Prerequisite: BSCI 1510 or CHBE 2150; CHBE 3250, CHBE 3300. FALL. [3]
CHBE 4810. Metabolic Engineering. [Formerly CHBE 282] Analysis and synthesis of metabolic networks using principles of thermodynamics, kinetics, and transport phenomena. Computational approaches for predicting metabolic phenotypes. Experimental techniques to measure and manipulate key metabolic variables including pathway fluxes, protein/gene expression, enzyme regulation, and intracellular metabolite concentrations. Prerequisite: CHBE 2150 or BSCI 1510 or CHBE 2150; junior standing. SPRING. [3]

CHBE 4820. Immunoengineering. Approaches and technologies for manipulating and studying the immune system. Topics include fundamentals of immunology, immunotherapy methods, vaccines and immunotherapies, drug delivery principles, and materials engineering for immunomodulation. Prerequisite: CHBE 2150 or BSCI 1510. [3]

CHBE 4830. Molecular Simulation. [Formerly CHBE 285] Introduction to the modern tools of statistical mechanics, such as Monte Carlo and molecular dynamics simulation, and variations. Understanding the methods, capabilities, and limitations of molecular simulation and applications to simple and complex fluids relevant to the chemical and related processing industries. Prerequisite: CHBE 3200, CHEM 3300. [3]

CHBE 4840. Applications of Metal and Metal Oxide Nanostructures. An engineering and materials science perspective on the electronic, photonic, catalytic, and surface properties of nanoscale metals and metal oxides. Applications in sensing, energy conversion, and storage. FALL. [3]

CHBE 4850. Semiconductor Materials Processing. [Formerly CHBE 284] Introduction to the materials processing unit operations of silicon device manufacturing. Topics include basic semiconductor physics and device theory, production of substrates, dopant diffusion, ion implantation, thermal oxidation and deposition processes, plasma deposition processes, photolithography, wet chemical and plasma etching, and analytical techniques. FALL. [3]

CHBE 4860. Molecular Aspects of Chemical Engineering. [Formerly CHBE 286] Integration of molecular chemistry, property-based thermodynamic descriptions, and a focus on intermolecular energetics for process analysis and product design. Case studies involve molecular, macromolecular, supramolecular, and biomolecular systems. Prerequisite: CHEM 2211 or 2221; CHBE 2200. [3]

CHBE 4870. Polymer Science and Engineering. [Formerly CHBE 287] Macromolecular systems with emphasis on the interrelationship of chemical, physical, and engineering properties. Further relation of these properties to synthesis. Physicochemical and biological applications. Prerequisite: CHBE 2200, a basic understanding of organic and physical chemistry. [3]

CHBE 4880. Corrosion Science and Engineering. [Formerly CHBE 288] Aqueous-phase metal and alloy corrosion phenomena. Fundamental chemistry and electrochemistry theories, as applied to corroding systems. Specific forms of corrosion including pitting, crevice corrosion, and galvanic corrosion. Methods for corrosion control based on electrochemical fundamentals. Prerequisite: CHBE 3300 or graduate standing. SPRING. [3]

CHBE 4899. Atmospheric Pollution. [Formerly CHBE 280] Fundamentals of atmospheric pollution and control. The sources and nature of gaseous and particulate air pollutants, the relation of meteorological conditions to their dispersal, and their effects on health and materials are discussed along with administration, standards, and control of air pollution. Prerequisite: Junior standing. SPRING. [3]

CHBE 4900W. Chemical Engineering Laboratory II. [Formerly CHBE 229W] Laboratory experiments in unit operations covering reactions and separations, Interpretation of data for equipment and process design. Writing and oral presentations are emphasized. One lecture hour and one 5-hour laboratory per week. Prerequisite: CHBE 3250, CHBE 3900W, CHBE 3350. Corequisite: CHBE 4500. FALL. [3]

CHBE 4950W. Chemical Engineering Process and Product Design. [Formerly CHBE 233W] A systematic approach to design and safety practices for chemical process operations. Process and product design, economic evaluation of alternatives, ethics, and a cost and safety analysis of a typical chemical, biological, or petroleum process and products. Steady-state and dynamic process simulations required. Three lecture hours and one two-hour laboratory each week. Prerequisites: CHBE 3200, CHBE 3250, CHBE 3350. FALL. [4]

CHBE 4951W. Chemical Engineering Design Projects. [Formerly CHBE 234W] Team-based, semester-long design project. Evaluation through periodic oral and written presentations, a final written report, and a poster report. Prerequisite: CHBE 4950W. SPRING. [3]

CHBE 4959. Senior Engineering Design Seminar. [Formerly CHBE 297] Elements of professional engineering practice. Professionalism, ethics, and social and ethical issues, intellectual property, contracts, liability, risk, reliability and safety, interdisciplinary teams and team tools, codes, standards, professional organizations, careers, entrepreneurship, human factors, and industrial design. Prerequisite: Senior standing. FALL. [1]

CHBE 5200. Phase Equilibria and Stage-Based Separations. (Also listed as CHBE 3200) Thermodynamic principles and calculations of mixture phase equilibrium. Development of correlations to design chemical separation processes. Applications to separation processes involving gases, liquids, and solids such as distillation, adsorption, and extraction. Simulation of separation processes. No credit for students who have earned credit for CHBE 3200. FALL. [3]

CHBE 5250. Chemical Reaction Engineering. (Also listed as CHBE 3250) Thermodynamic basis of chemical equilibrium. Analysis of chemical kinetic data and application to the design of chemical reactors. Batch, semibatch, and flow reactors are considered in both steady-state and transient operation. Brief treatments of catalysis and physical and chemical adsorption. No credit for students who have earned credit for CHBE 3250. SPRING. [3]

CHBE 5300. Fluid Mechanics and Heat Transfer. (Also listed as CHBE 3300) Principles of momentum and energy transport and their application to the analysis and design of chemical and biological engineering systems. No credit for students who have earned credit for CHBE 3300. FALL. [3]

CHBE 5350. Mass Transfer and Rate-Based Separations. (Also listed as CHBE 3350) Principles of mass transfer and their application to the analysis of chemical and biological engineering systems. Design of rate-based separation operations. No credit for students who have earned credit for CHBE 3350. SPRING. [3]

CHBE 5500. Bioprocess Engineering. (Also listed as CHBE 4500) Application of cellular and molecular biology to process engineering to describe the manufacture of products derived from cell cultures. Design and scale-up of bioreactors and separation equipment. Metabolic and protein engineering utilizing genetically engineered organisms. No credit for students who have earned credit for CHBE 4500. FALL. [3]

CHBE 5600. Chemical Process Control. (Also listed as CHBE 3600) Design of control systems for chemical processes. Principles of process dynamics and control of single and multivariable systems. Frequency and stability analyses and their effect on controller design. No credit for students who have earned credit for CHBE 5600. SPRING. [3]

CHBE 5810. Metabolic Engineering. (Also listed as CHBE 4810) Analysis and synthesis of metabolic networks using principles of thermodynamics, kinetics, and transport phenomena. Computational approaches for predicting metabolic phenotypes. Experimental techniques to measure and manipulate key metabolic variables including pathway fluxes, protein/gene expression, enzyme regulation, and intracellular metabolite concentrations. No credit for students who have earned credit for CHBE 4810. SPRING. [3]

CHBE 5820. Immunoengineering. (Also listed as CHBE 4820) Approaches and technologies for manipulating and studying the immune system. Topics include fundamentals of immunology, immunology tools and methods, vaccines and immunotherapies, drug delivery principles, and materials engineering for immunomodulation. No credit for students who have earned credit for CHBE 4820. [2]

CHBE 5830. Molecular Simulation. (Also listed as CHBE 4830) Introduction to the modern tools of statistical mechanics, such as Monte Carlo and molecular dynamics simulation, and variations. Understanding
the methods, capabilities, and limitations of molecular simulation and applications to simple and complex fluids relevant to the chemical and related processing industries. No credit for students who have earned credit for CHBE 4830. [2]

CHBE 5840. Applications of Metal and Metal Oxide Nanostructures. (Also listed as CHBE 4840) An engineering and materials science perspective on the electronic, photonic, catalytic, and surface properties of nanoscale metals and metal oxides. Applications in sensing, energy conversion, and storage. No credit for students who have earned credit for CHBE 4840. FALL. [3]

CHBE 5850. Semiconductor Materials Processing. (Also listed as CHBE 4850) Introduction to the materials processing unit operations of silicon device manufacturing. Topics include basic semiconductor physics and device theory, production of substrates, dopant diffusion, ion implantation, thermal oxidation and deposition processes, plasma deposition processes, photolithography, wet chemical and plasma etching, and analytical techniques. No credit for students who have earned credit for CHBE 4850. FALL. [3]

CHBE 5860. Molecular Aspects of Chemical Engineering. (Also listed as CHBE 4860) Integration of molecular chemistry, property-based thermodynamic descriptions, and a focus on intermolecular energetics for process analysis and product design. Case studies involve molecular, macromolecular, supramolecular, and biomolecular systems. No credit for students who have earned credit for CHBE 4860. [3]

CHBE 5870. Polymer Science and Engineering. (Also listed as CHBE 4870) Macromolecular systems with emphasis on the interrelationship of chemical, physical, and engineering properties. Further relation of these properties to synthesis. Physicochemical and biological applications. No credit for students who have earned credit for CHBE 4870. [3]

CHBE 5880. Corrosion Science and Engineering. (Also listed as CHBE 4880) Aqueous-phase metal and alloy corrosion phenomena. Fundamental chemistry and electrochemistry theories, as applied to corroding systems. Specific forms of corrosion including pitting, crevice corrosion, and galvanic corrosion. Methods for corrosion control based on electrochemical fundamentals. No credit for students who have earned credit for CHBE 4880. SPRING. [3]

CHBE 5890. Special Topics. (Also listed as CHBE 4890) No credit for students who have earned credit for CHBE 3890, [Variable credit: 1-3 each semester] (Offered on demand)

CHBE 5899. Atmospheric Pollution. (Also listed as CHBE 4899) Fundamentals of atmospheric pollution and control. The sources and nature of gaseous and particulate air pollutants, the relation of meteorological conditions to their dispersal, and their effects on health and materials are discussed along with administration, standards, and control of air pollution. No credit for students who have earned credit for CHBE 4899. SPRING. [3]

CHBE 6200. Transport Phenomena. [Formerly CHBE 312] The theory of non-equilibrium processes. Development of the analogy between momentum, energy, and mass transport with applications to common engineering problems. SPRING. [3]

CHBE 6215. Systems Analysis for Process Design and Control. [Formerly CHBE 315] The design and control of chemical process plants, including economic optimization under steady state and transient conditions. [3]

CHBE 6220. Surfaces and Adsorption. [Formerly CHBE 320] Surface energy, capillarity, contact angles and wetting, surface films, insoluble monolayers, solid surfaces, membranes, surface area determination, adsorption, adhesion, interface thermodynamics, friction and lubrication, interface in composites, relationships of surface to bulk properties of materials. FALL. [3]

CHBE 6250. Professional Communication Skills for Engineers. [Formerly CHBE 395] Introduction of graduate-level written and oral communication skills for engineers. Skills needed to produce peer-reviewed journal publications, research proposals, and research presentations are covered. SPRING. [1]

CHBE 7899. Master of Engineering Project. [Formerly CHBE 389]

CHBE 7999. Master’s Thesis Research. [Formerly CHBE 369]

CHBE 8900. Special Topics. [Formerly CHBE 397] [Variable credit: 1-3 each semester]

CHBE 8991. Seminar. [Formerly CHBE 398] [Variable credit: 1-3 each semester]

CHBE 8999. Ph.D. Dissertation Research. [Formerly CHBE 399]

Civil Engineering

CE 2105. Civil and Environmental Engineering Information Systems II. [Formerly CE 161] Part II of a two-semester sequence providing an introduction to information technologies utilized by civil and environmental engineers. Project-oriented course focusing on developing skills in leveling, mapping, and GIS. Integration of CAD and surveying in hands-on, team-oriented projects addressing specific civil engineering information systems. Project work will include familiarization with, and use of, department information systems instrumentation. Computer applications. Prerequisite: CE 2100. SPRING. [2]

CE 2200. Statics. [Formerly CE 180] Application to systems of forces in two and three dimensions (particles and rigid bodies), resultants, equivalent systems, and equilibria. Vector notation, introduction to shear and moment diagrams, moments of inertia, friction, three-dimensional representation. Credit offered for only one of CE 2200 or BME 2100. Corequisite: MATH 1301. FALL, SPRING, SUMMER. [3]

CE 3100W. Civil and Environmental Engineering Laboratory. [Formerly CE 205W] A team project-oriented course that integrates principles of engineering design, simulation, and experimentation as applied to civil engineering. Emphasis on experimental design, data analysis, and technical communication. Prerequisite: CE 3200. SPRING. [2]

CE 3205. Introduction to Structural Design. [Formerly CE 235] Properties of steel and design philosophies. Load and resistance factor design of ties, struts, beams, columns, and very simple connections using bolts and welds as fasteners based on AISC Specifications. Properties of reinforced concrete and design philosophy. Design of beams in flexure and shear, one-way slabs, T-beams, columns, development length, and serviceability based on ACI Codes of Practice. Prerequisite: CE 3200. SPRING. [3]

CE 3250. Geotechnical Engineering. [Formerly CE 240] Origin, formation, identification, and engineering properties of soils. Discussion on index properties, soil moisture, soil structure, compressibility, shear strength, stress analysis, Rankine and Coulomb earth pressure theories and bearing capacity. Laboratory experiences. Graduate credit for earth and environmental sciences majors. Prerequisite: CE 2205. FALL. [3]

CE 3600. Environmental Engineering. [Formerly CE 226] Introduction to the parameters affecting environmental quality, including air and water pollutants, and treatment techniques to achieve drinking water quality or to permit safe discharge to the environment. Contaminant transport and interactions of contaminants with the environment. Governmental regulations covering air, water, solid and hazardous wastes. Overview of residuals management including hazardous and solid wastes and sludge handling, treatment, and disposal. Prerequisite: CHEM 1601, PHYS 1601/1602, MATH 2420. Corequisite: CE 3700 or CHBE 3300 or ME 3224. FALL. [3]

CE 3601. Transportation Systems Engineering. [Formerly CE 225] The planning, design, and implementation of transportation systems. Particular emphasis is placed upon the design process, traffic engineering, urban transportation planning, and the analysis of current transportation issues. FALL. [3]

CE 3700. Fluid Mechanics. [Formerly CE 203] Physical properties of fluids, fluid statics; integral and differential equations of conservation of mass, energy, and momentum; principles of real fluid flows; boundary layer effects, flow through pipes, flow in open channels, drag forces on bodies. Emphasis on civil and environmental engineering applications. Credit not awarded for both CE 3700 and ME 3224. Prerequisite: ME 2190, MATH 2420. Graduate credit for students in earth and environmental sciences. FALL, SUMMER. [3]

CE 3700L. Fluid Mechanics Laboratory. [Formerly CE 204] Team project-oriented course. Practical applications of fluid mechanics principles through laboratory exercises and field trips. Corequisite: CE 3700. FALL. [1]

CE 3705. Water Resources Engineering. [Formerly CE 227] Introduction to engineering of water resources and sewerage systems that control the quantity, quality, timing, and distribution of water to support human habitation and the needs of the environment. Closed conduit flow, open channel flow, surface hydrology, groundwater hydrology, and contaminant transport. Prerequisite: CHEM 1601, PHYS 1601/1602, MATH 2420, CE 3700. SPRING. [3]

CE 3841. Directed Study. [Formerly CE 200A] Directed individual study of a pertinent topic in civil and environmental engineering. May include literature review and analysis, analytical investigations, and/or experimental work. Prerequisite: Junior standing, completion of two CE courses, and one-page proposal approved by supervising faculty member and chair. FALL, SPRING, SUMMER. [Variable credit: 1-3 each semester]

CE 3842. Directed Study. [Formerly CE 200B] Continuation of CE 3841 in the same or another area of civil and environmental engineering. Prerequisite: CE 3841 and one-page proposal approved by supervising faculty member and chair. FALL, SPRING, SUMMER. [Variable credit: 1-3 each semester]

CE 3843. Directed Study. [Formerly CE 200C] Continuation of CE 3842 in the same or another area of civil and environmental engineering. Prerequisite: CE 3842 and one-page proposal approved by supervising faculty member and chair. FALL, SPRING, SUMMER. [Variable credit: 1-3 each semester]

CE 3890. Special Topics. [Formerly CE 299] [3]

CE 4200. Advanced Structural Steel Design. [Formerly CE 293] Advanced topics in column and beam design including local buckling, composite beams, plate girders, and torsion design. Behavior and design of bolted and welded connections. Structural planning and design of structural systems such as multistory buildings including computer applications. Prerequisite: CE 3205. FALL. [3]

CE 4250. Foundation Analysis and Design. [Formerly CE 251] Study of shallow and deep foundation elements and systems for civil engineering structures. Soil exploration and site investigation. Prerequisite: CE 3250. SPRING. [3]

CE 4300. Reliability and Risk Case Studies. [Formerly CE 290] Review of case studies involving successes and failures in managing reliability and risk assessment of engineering systems from a wide range of perspectives, including design, production, operations, organizational culture, human factors and exogenous events. Analysis of event sequences in terms of public health and safety, the environment and business continuity, and the implications on regulation, legal liability and business practices. Evaluation of mitigation strategies based on achievable goals, technical and political feasibility and economic impact. Cases drawn from natural disasters, industrial accidents, and intentional acts. Prerequisite: Junior standing or consent of instructor. FALL. [3]

CE 4400. Construction Project Management. [Formerly CE 286] Introduction to the theory and application of the fundamentals of construction project management. The construction process and the roles of professionals in the process. Broad overview of the construction project from conception through completion. Application of management practices including planning, directing, cost minimizing, resource allocation, and control of all aspects of construction operations and resources. Credit given for only one of ENGM 3700, CE 4400, or EECE 4950. Prerequisite: CE 3205. FALL. [3]

CE 4401. Advanced Construction Project Management. [Formerly CE 289] Current and critical issues in the construction industry, including best practices developed at the Construction Industry Institute (CII). Guest lecturers include representatives of the CII and visiting industry leaders. Prerequisite: CE 4400, senior standing. FALL. [3]

resource allocation; and controlling all aspects of construction operations and resources, from pre-construction through operation and maintenance. Use of real-world examples and project scheduling software. Prerequisite: CE 4400, CE 4405. SPRING. [3]

CE 4415. Construction Materials and Methods. [Formerly CE 291] Implications of design realities, material specifications, code limitations, and regulations on the construction process. Natural and man-made materials, construction techniques, and other issues that impact quality, constructability, and life-cycle assessment. Prerequisite: Senior standing. SUMMER. [3]

CE 4420. Construction Law and Contracts. [Formerly CE 292] Review of case studies involving successes and failures in legal principles and landmark cases relevant to civil engineering and construction. Contracts, torts, agency and professional liability, labor laws, insurance, expert testimony, arbitration, patents and copyrights, sureties, and ethics. Prerequisite: CE 4400. SPRING. [3]

CE 4425. Building Information Modeling. [Formerly CE 296] Generation and management of building data during its life cycle. Three-dimensional, real-time, dynamic modeling to increase productivity in building design and construction. Considerations of building geometry, spatial relationships, geographic information, and building components. Prerequisite: Senior standing. FALL. [3]

CE 4500. Transportation System Design. [Formerly CE 255] Geometric analysis of transportation ways with particular emphasis on horizontal and vertical curve alignment. Design of highways, interchanges, intersections, and facilities for air, rail, and public transportation. Prerequisite: CE 3601, junior standing. SPRING. [3]

CE 4505. Urban Transportation Planning. [Formerly CE 256] Analytical methods and the decision-making process. Transportation studies, travel characteristic analysis, and land-use implications are applied to surface transportation systems. Emphasis is on trip generation, trip distribution, modal split, and traffic assignment. Computerized planning programs are used. Prerequisite: CE 3601, junior standing. SPRING. [3]

CE 4510. Traffic Engineering. [Formerly CE 257] Analysis of the characteristics of traffic, including the driver, vehicle, volumes, speeds, capacities, roadway conditions, and accidents. Traffic regulation, control, signing, signalization, and safety programs are also discussed. Prerequisite: CE 3601. FALL. [3]

CE 4900. Civil and Environmental Engineering Seminar. [Formerly CE 252] A seminar designed to introduce students to current technical and professional issues through literature discussions, seminars by faculty and practicing engineers, and participation in panel discussions. Prerequisite: Senior or graduate standing or consent of instructor. FALL, SPRING. [1]

CE 4950. Civil Engineering Design I. [Formerly CE 248] A meaningful, major engineering design course for civil engineering students. Includes a response to request(s) for proposals, project conception, project design, design analysis, and economic evaluation of alternatives for typical civil engineering projects within selected areas of professional depth. Includes consideration of safety, reliability, aesthetics, ethics, social and environmental impact, and government regulations. Prerequisite: CE 3100W or senior standing. FALL. [1]

CE 4951. Civil Engineering Design II. [Formerly CE 249] A continuation of CE 4950. The course involves an oral presentation and the submission of a final design report. Prerequisite: CE 4950. SPRING. [2]

CE 5100. Geographic Information Systems (GIS). (Also listed as CE 4100) Principles of computerized geographic information systems (GIS) and analytical use of spatial information. Integration with global positioning systems (GPS) and internet delivery. Includes GIS software utilization and individual projects. No credit for students who have earned credit for CE 4100. SPRING. [3]

CE 5200. Advanced Structural Steel Design. (Also listed as CE 4200) Advanced topics in column and beam design including local buckling, composite beams, plate girders, and torsion design. Behavior and design of bolted and welded connections. Structural planning and design of structural systems such as multistory buildings including computer applications. No credit for students who have earned credit for CE 4200. FALL. [3]

CE 5210. Advanced Reinforced Concrete Design. (Also listed as CE 4210) Design and behavior of two-way slab systems. Yield line theory, shear and torsion analysis and design. Serviceability requirements and control of deflections of reinforced concrete systems. Introduction to prestressed concrete. No credit for students who have earned credit for CE 4210. SPRING. [3]

CE 5250. Foundation Analysis and Design. (Also listed as CE 4250) Study of shallow and deep foundation elements and systems for civil engineering structures. Soil exploration and site investigation. No credit for students who have earned credit for CE 4250. SPRING. [3]

CE 5300. Reliability and Risk Case Stud. (Also listed as CE 4300) Review of case studies involving successes and failures in managing reliability and risk assessment of engineering systems from a wide range of perspectives, including design, production, operations, organizational culture, human factors and exogenous events. Analysis of event consequences in terms of public health and safety, the environment and business continuity, and the implications on regulation, legal liability and business practices. Evaluation of mitigation strategies based on achievable goals, technical and political feasibility and economic impact. Cases drawn from natural disasters, industrial accidents, and intentional acts. No credit for students who have earned credit for CE 4300. FALL. [3]

CE 5400. Construction Project Management. (Also listed as CE 4400) Introduction to the theory and application of the fundamentals of construction project management. The construction process and the roles of professionals in the process. Broad overview of the construction project from inception through completion. Application of management practices including planning, directing, cost minimizing, resource allocation, and control of all aspects of construction operations and resources. No credit for students who have earned credit for CE 4400. FALL. [3]

CE 5401. Advanced Construction Project Management. (Also listed as CE 4401) Current and critical issues in the construction industry, including best practices developed at the Construction Industry Institute (CII). Guest lecturers include representatives of the CII and visiting industry leaders. No credit for students who have earned credit for CE 4401. FALL. [3]

CE 5405. Construction Estimating. (Also listed as CE 4405) Fundamentals of construction estimating. Estimation of material, labor, and equipment quantities, including costing and pricing of projects. Application of estimating practices using real-world examples and project estimating software. Corequisite: CE 5400. No credit for students who have earned credit for CE 4405. FALL. [3]

CE 5410. Construction Planning and Scheduling. (Also listed as CE 4410) Fundamentals of construction planning and scheduling. Application of management practices including: process planning; directing, costing; resource allocation; and controlling all aspects of construction operations and resources, from pre-construction through operation and maintenance. Use of real-world examples and project scheduling software. No credit for students who have earned credit for CE 4410. SPRING. [3]

CE 5415. Construction Materials and Methods. (Also listed as CE 4415) Implications of design realities, material specifications, code limitations, and regulations on the construction process. Natural and man-made materials, construction techniques, and other issues that impact quality, constructability, and life-cycle assessment. No credit for students who have earned credit for CE 4415. SUMMER. [3]

CE 5420. Construction Law and Contracts. (Also listed as CE 4420) Review of case studies involving successes and failures in legal principles and landmark cases relevant to civil engineering and construction. Contracts, torts, agency and professional liability, labor laws, insurance, expert testimony, arbitration, patents and copyrights, sureties,
and ethics. No credit for students who have earned credit for CE 4420. SPRING. [3]

CE 5425. Building Information Modeling. (Also listed as CE 4425) Generation and management of building data during its life cycle. Three-dimensional, real-time, dynamic modeling to increase productivity in building design and construction. Considerations of building geometry, spatial relationships, geographic information, and building components. No credit for students who have completed CE 4425. FALL. [3]

CE 5430. Building Systems and LEED. (Also listed as CE 4430) Design and construction of mechanical, electrical, plumbing, and telecommunication systems in buildings. Leadership in Energy and Environmental Design (LEED) green Building Rating System (TM) building approach to sustainability. No credit for students who have earned credit for CE 4430. SPRING. [3]

CE 5500. Transportation System Design. (Also listed as CE 4500) Geometric analysis of transportation ways with particular emphasis on horizontal and vertical curve alignment. Design of highways, interchanges, intersections, and facilities for air, rail, and public transportation. No credit for students who have earned credit for CE 4500. SPRING. [3]

CE 5505. Urban Transportation Planning. (Also listed as CE 4505) Analytical methods and the decision-making process. Transportation studies, travel characteristic analysis, and land-use implications and applied to surface transportation systems. Emphasis is on trip generation, trip distribution, modal split, and traffic assignment. Computerized planning programs are used. No credit for students who have earned credit for CE 4505. SPRING. [3]

CE 5510. Traffic Engineering. (Also listed as CE 4510) Analysis of the characteristics of traffic, including the driver, vehicle, volumes, speeds, capacities, roadway conditions, and accidents. Traffic regulation, control, signing, signalization, and safety programs are also discussed. No credit for students who have earned credit for CE 4510. FALL. [3]

CE 5999. Special Topics. (Also listed as CE 3890) No credit for students who have earned credit for CE 3890. [3]

CE 6305. Engineering Design Optimization. [Formerly CE 311] Methods for optimal design of engineering systems. Optimization under uncertainty, reliability-based design optimization, robust design, multidisciplinary problems, multi-objective optimization. Discrete and continuous design variables, advanced numerical algorithms, and formulations and strategies for computational efficiency. Practical applications and term projects in the student’s area of interest. Prerequisite: MATH 4630, MATH 4620 or CE 6300. [3]

CE 6310. Uncertainty Quantification. [Formerly CE 313] Computational methods for analysis and design of modern engineering systems under uncertainty. Emphasis on epistemic uncertainty due to data and models. Topics include stochastic finite elements; time-dependent reliability; Bayesian methods and networks; surrogate modeling; advanced simulation; global sensitivity analysis; model verification, validation, and calibration; and optimization under uncertainty. Applications to practical engineering systems. Prerequisite: CE 6300. SPRING. [3]

CE 6318. Prestressed Concrete. [Formerly CE 318] Behavior and design of statically determinate prestressed concrete structures under bending moment, shear, torsion, and axial load effects. Design of statically determinate prestressed structures such as continuous beams, frames, slabs and shells. Creep and shrinkage effects and deflections of prestressed concrete structures. Application to the design and construction of bridges and buildings. Prerequisite: CE 3205. [3]

CE 6351. Public Transportation Systems. [Formerly CE 351] Comprehensive study of public transportation, with emphasis on planning, management, and operations; paratransit, ridesharing, and rural public transportation systems. Prerequisite: CE 4505. SPRING. [3]

CE 6353. Airport Planning and Design. [Formerly CE 353] Integration and application of the principles of airport master planning from the beginning stages of site selection through actual design of an airport facility. Specific study topics address demand forecasting, aircraft characteristics, capacity analyses, and geometric design of runways, terminals, and support facilities. Prerequisite: CE 3601. [3]

CE 6355. Advanced Transportation Design. [Formerly CE 355] An in-depth view of the design process. Complex design problems and solutions, with the use of computer-based analytical and design tools. Comprehensive design projects. Prerequisite: CE 4500. SPRING. [3]
CE 6356. Advanced Transportation Planning. [Formerly CE 356] A continuation of the concepts from CE 256, with emphasis on analytical techniques used in forecasting travel. Use of computer-based models, transportation and energy contingency planning methods. Prerequisite: CE 4505. SPRING. [3]

CE 6357. Theory of Traffic Flow. [Formerly CE 357] A study of traffic flow from the perspective of probability as applied to highway, intersection and weaving capacities. Discrete and continuous flow, vehicle distributions, queuing, and simulation. Prerequisite: CE 4510. [3]

CE 6359. Emerging Information Systems Applications. [Formerly CE 359] Introduction to emerging information systems technologies and their role in improving productivity and efficiency in managing engineering operations. Design of integrated approaches to enhance the speed, accuracy, reliability, and quantity of information available for decision support. Emphasis on case studies of innovative applications in transportation and manufacturing, leading to individual and group projects requiring new product development. Prerequisite: Background transportation or manufacturing operations. FALL. [3]

CE 7899. Master of Engineering Project. [Formerly CE 389]

CE 7999. Master's Thesis Research. [Formerly CE 369]

CE 8000. Individual Study of Civil Engineering Problems. [Formerly CE 325A] Literature review and analysis of special problems under faculty supervision. FALL, SPRING, SUMMER. [1-4 each semester]

CE 8001. Individual Study of Civil Engineering Problems. [Formerly CE 325B] Literature review and analysis of special problems under faculty supervision. FALL, SPRING, SUMMER. [1-4 each semester]

CE 8002. Individual Study of Civil Engineering Problems. [Formerly CE 325C] Literature review and analysis of special problems under faculty supervision. FALL, SPRING, SUMMER. [1-4 each semester]

CE 8300. Reliability and Risk Engineering Seminar. [Formerly CE 371A] Seminars by expert speakers provide a wide range of perspectives on reliability and risk assessment and management of multi-disciplinary engineering systems. Topics on infrastructure and environmental systems, mechanical, automotive, and aerospace systems; network systems (power distribution, water and sewage systems, transportation etc.); manufacturing and construction; and electronic and software systems. FALL, SPRING. [1]

CE 8301. Reliability and Risk Engineering Seminar. [Formerly CE 371B] Seminars by expert speakers provide a wide range of perspectives on reliability and risk assessment and management of multidisciplinary engineering systems. Topics on infrastructure and environmental systems; mechanical, automotive, and aerospace systems; network systems (power distribution, water and sewage systems, transportation, etc.); manufacturing and construction; and electronic and software systems. FALL, SPRING, [1]

CE 8999. Non-Candidate Research. [Formerly CE 379] Research prior to entry into candidacy (completion of qualifying examination) and for special non-degree students. [Variable credit: 0-12]

CE 9999. Ph.D. Dissertation Research. [Formerly CE 399]

Environmental Engineering

ENVE 3610. Sustainable Development. [Formerly ENVE 220A] Quantitative investigation of the role of adequate and renewable resources for continual economic development. Past and present resource challenges, influences of indigenous, national, and international cultures, land use practices, social policy, and economic strategies on infrastructure development. Future challenges posed by climate change, and how market- and government-based policies may be applied in conditions of uncertainty to encourage sustainable development. Intended to be followed by ENVE 3611. SPRING. [3]

ENVE 3611. Sustainable Development Field Experience. [Formerly ENVE 220B] Through lectures, research projects, and service-learning opportunities, students will reflect on themes from ENVE 3610 and apply them to work in the field. Students will design and conduct quantitative-oriented research projects in collaboration with faculty mentors and international partners. Prerequisite: ENVE 3610. SUMMER. [1-3]

ENVE 3612. Sustainable Development Research. [Formerly ENVE 220C] A quantitative, project- and research-based seminar drawing on student experiences and learning in ENVE 3610 and ENVE 3611. Prerequisite: ENVE 3611. FALL. [3]

ENVE 4305. Enterprise Risk Management. [Formerly ENVE 296] Development of safety and security programs for protecting human health, the environment and business continuity. Focus on defining all-hazards risk management process and program implementation, performing risk assessments, determining and selecting appropriate risk reduction strategies, and influencing risk management decisions internally and externally. Applications drawn from natural disasters, man-made accidents and intentional acts. Prerequisite: Senior standing or consent of instructor. SPRING. [3]

ENVE 4600. Environmental Chemistry. [Formerly ENVE 271] Theoretical aspects of physical, organic, and inorganic chemistry applied to environmental engineering. Estimation of chemical parameters based on thermodynamic and structural activity relationships, kinetics of chemical reactions, equilibrium processes in the environment, including the carbonate system, metal complexion and precipitation. Prerequisite: CHEM 1601-1602, senior standing. FALL. [3]

ENVE 4605. Environmental Thermodynamics, Kinetics, and Mass Transfer. [Formerly ENVE 270] Examination of fundamental environmental processes and phenomena that provide the analytical tools necessary to solve a broad range of environmental problems. These tools include equilibrium phenomena, process rate and mass transport phenomena. Prerequisite: CHEM 1601-1602, MATH 2420, CE 3600, senior standing. SPRING. [3]

ENVE 4610. Biological Unit Processes. [Formerly ENVE 272] Principles of biology and their application to wastewater treatment processes with emphasis on microbial ecology, bioenergetics, and the role of chemical structure in biodegradability. Utilization kinetics of inhibitory and non-inhibitory organic compounds. Biological process analysis and design (aerobic and anaerobic) for municipal and industrial wastewaters, using a mass balance approach. Prerequisite: Senior standing or above. SPRING. [3]

ENVE 4615. Environmental Assessments. [Formerly ENVE 254] Design and conduct of environmental assessments to evaluate risks posed by infrastructure systems or environmental contamination. Impact analyses for sources, infrastructure modifications, due diligence environmental audits, and contaminated site remedial investigations. Prerequisite: Senior standing or consent of instructor. FALL. [3]

ENVE 4620. Environmental Characterization and Analysis. [Formerly ENVE 273] Acquisition and interpretation of environmental data. Principles of chemical measurement, sample collection and sample program design; laboratory safety and good laboratory practices; analytical instrumentation and methods; quality assurance and quality control; and statistical interpretation of data. Hands-on experience through demonstrations featuring state-of-the-art analytical instrumentation. Prerequisite: Junior standing, CE 3600, ENVE 4600. SPRING. [3]

ENVE 4700. Energy and Water Resources. [Formerly ENVE 254] Scientific, technological, philosophical, and social issues surrounding approaches to carbon-based energy and alternative energy resources, management of carbon through sequestration, supplying and treating water for agriculture, communities, and industry, and changing climate impacts on regional distribution of water resources. SPRING. [3]

ENVE 4705. Physical Hydrology. [Formerly ENVE 252] Development of fundamental bases of hydrological processes. Land-atmosphere processes, surface-water flows, soil moisture dynamics, and groundwater flows. Exposition of physical principles, their embodiment in mathematical models, and their use in interpreting observations in the field and laboratory. Prerequisite: CE 3700 or ME 3224 or CHBE 3300 or EES 4550. FALL. [3]

ENVE 4716. Physical/Chemical Unit Processes. [Formerly ENVE 277] Principles of mass transfer, chemistry, and chemical reactor technology applied to the design and operation of water and wastewater treatment processes. Unit processes such as coagulation/flocculation, sedimentation, filtration, carbon adsorption, ion exchange, air stripping, precipitation, chemical oxidation and chemical reduction as alternatives for the treatment of drinking water and industrial wastewaters. Prerequisite: CE 3600, senior standing. SPRING. [3]

ENVE 4800. Introduction to Nuclear Environmental Engineering. [Formerly ENVE 285] The nuclear fuel cycle and environmental and societal impacts associated with its traditional implementation. Technical and programmatic challenges associated with fuel production, and waste management including processing, storage, transportation, decontamination, decommissioning, and environmental restoration. Technologies and approaches for reducing impacts of the nuclear fuel cycle. Prerequisite: Senior or graduate standing. SPRING. [3]

ENVE 5305. Enterprise Risk Management. [Also listed as ENVE 4305] Development of safety and security programs for protecting human health, the environment and business continuity. Focus on defining an all-hazards risk management process and program implementation, performing risk assessments, determining and selecting appropriate risk reduction strategies, and influencing risk management decisions internally and externally. Applications drawn from natural disasters, man-made accidents and intentional acts. No credit for students who have earned credit for ENVE 4305. SPRING. [3]

ENVE 5600. Environmental Chemistry. [Also listed as ENVE 4600] Theoretical aspects of physical, organic, and inorganic chemistry applied to environmental engineering. Estimation of chemical parameters based on thermodynamic and structural activity relationships, kinetics of chemical reactions, equilibrium processes in the environment, including the carbonate system, metal complexation and precipitation. No credit for students who have earned credit for ENVE 4600. FALL. [3]

ENVE 5605. Environmental Thermodynamics, Kinetics, and Mass Transfer. [Also listed as ENVE 4605] Examination of fundamental environmental processes and phenomena that provide the analytical tools necessary to solve a broad range of environmental problems. These tools include equilibrium phenomena, process rate and mass transport phenomena. No credit for students who have earned credit for ENVE 4605. SPRING. [3]

ENVE 5610. Biological Unit Processes. [Also listed as ENVE 4610] Principles of biology and their application to wastewater treatment processes with emphasis on microbial ecology, bioenergetics, and the role of chemical structure in biodegradability. Utilization kinetics of inhibitory and non-inhibitory organic compounds. Biological process analysis and design (aerobic and anaerobic) for municipal and industrial wastewaters, using a mass balance approach. No credit for students who have earned credit for ENVE 4610. SPRING. [3]

ENVE 5615. Environmental Assessments. [Also listed as ENVE 4615] Design and conduct of environmental assessments to evaluate risks posed by infrastructure systems or environmental contamination. Impact analyses for sources, infrastructure modifications, due diligence environmental audits, and contaminated site remedial investigations. No credit for students who have earned credit for ENVE 4615. FALL. [3]

ENVE 5620. Environmental Characterization and Analysis. [Also listed as ENVE 4620] Acquisition and interpretation of environmental data. Principles of chemical measurement, sample collection and sample program design; laboratory safety and good laboratory practices; analytical instrumentation and methods; quality assurance and quality control; and statistical interpretation of data. Hands-on experience through demonstrations featuring state-of-the-art analytical instrumentation. No credit for students who have earned credit for ENVE 4620. SPRING. [3]

ENVE 5700. Energy and Water Resources. [Also listed as ENVE 4700] Scientific, technological, philosophical, and social issues surrounding approaches to carbon-based energy and alternative energy resources, management of carbon through sequestration, supplying and treating water for agriculture, communities, and industry, and changing climate impacts on regional distribution of water resources. No credit for students who have earned credit for ENVE 4700. SPRING. [3]

ENVE 5705. Physical Hydrology. [Also listed as ENVE 4705] Development of fundamental bases of hydrological processes. Landatmosphere processes, surfacewater flows, soil moisture dynamics, and groundwater flows. Exposition of physical principles, their embodiment in mathematical models, and their use in interpreting observations in the field and laboratory. No credit for students who have earned credit for ENVE 4705. FALL. [3]

ENVE 5710. Hydrology. [Also listed as ENVE 4710] The hydrologic cycle, study of precipitation, evapotranspiration, hydrometeorology, stream flow, flood flow, flood routing, storm sewer design, detention basin design, and water quality. No credit for students who have earned credit for ENVE 4710. FALL. [3]

ENVE 5715. Groundwater Hydrology. [Also listed as ENVE 4715] The occurrence and flow of ground water. Basic concepts of the effects of varying permeability and capillarity on seepage flow. Flow toward wells, through dikes, and beneath dams. No credit for students who have earned credit for ENVE 4715. SPRING. [3]

ENVE 5720. Surface Water Quality Modeling. [Also listed as ENVE 4720] Analysis of physical, chemical, biological, and physiological contaminants in streams, lakes, and estuaries, and surface water/groundwater interfaces. Analytical and numerical modeling techniques. One- and two-dimensional computer simulation of surface water quality. No credit for students who have earned credit for ENVE 4720. SPRING. [3]

ENVE 5800. Introduction to Nuclear Environmental Engineering. [Formerly ENVE 330] The nuclear fuel cycle and environmental and societal impacts associated with its traditional implementation. Technical and programmatic challenges associated with fuel production, and waste management including processing, storage, transportation, decontamination, decommissioning, and environmental restoration. Technologies and approaches for reducing impacts of the nuclear fuel cycle. No credit for students who have earned credit for ENVE 4705. FALL. [3]

ENVE 6800. Nuclear Facilities Life Cycle Engineering. [Formerly ENVE 330] The life cycle (including siting, licensing, construction, operation, and decommissioning) of the nuclear facilities that comprise the nuclear fuel cycle--from mining uranium ore through the potential recycling of used nuclear fuel. SPRING. [3]

ENVE 6805. Storage, Treatment and Disposal of Radioactive Waste. [Formerly ENVE 332] Evolution of current domestic and international approaches, including waste forms, classification, storage and disposal locations, and environmental and safety assessments. FALL. [3]
ENVE 7531. Nuclear Chemistry and Processes. [Formerly ENVE 331] Chemistry and chemical processing of the actinides and important fission products and byproducts. Development of nuclear chemical engineering processes for these materials. SPRING. [3]

ENVE 7533. Nuclear Process Safety. [Formerly ENVE 333] Approaches for evaluating the safety of nuclear radiochemical processing systems. Safety analysis practices from the chemical industry, the nuclear power community, and the United States nuclear weapons complex, and other quantitative and qualitative risk assessment methods. FALL. [3]

ENVE 7534. Nuclear Environmental Regulation, Law and Practice. [Formerly ENVE 334] Environmental laws and regulations governing radionuclides and radioactive waste, including those concerning hazardous chemicals and wastes and those impacting commercial nuclear fuel cycle facilities and former nuclear weapons and materials sites. Interplay between regulatory agencies such as the US Nuclear Regulatory Commission, the US. Environmental Protection Agency, and the states. Self-regulation of activities by the US. Department of Energy. SUMMER. [3]

ENVE 7812. Pollutant Transport in the Environment. [Formerly ENVE 312] An introduction to the mathematical foundations of fluid mechanics and transport of pollutants in the environment. Fundamental conservation of mass, momentum, and energy equations will be developed. Appropriate initial and boundary conditions and solution techniques will be discussed for a number of applications. Prerequisite: CE 3700, MATH 2420. FALL. [3]

ENVE 7899. Master of Engineering Project. [Formerly ENVE 389]

ENVE 7999. Master’s Thesis Research. [Formerly ENVE 369]

ENVE 8000. Individual Study. [Formerly ENVE 325A] Literature review and analysis, or laboratory investigation of special problems under faculty supervision. FALL, SPRING, SUMMER. [Variable credit: 1-4 each semester]

ENVE 8001. Individual Study. [Formerly ENVE 325B] Literature review and analysis, or laboratory investigation of special problems under faculty supervision. FALL, SPRING, SUMMER. [Variable credit: 1-4 each semester]

ENVE 8002. Individual Study. [Formerly ENVE 325C] Literature review and analysis, or laboratory investigation of special problems under faculty supervision. FALL, SPRING, SUMMER. [Variable credit: 1-4 each semester]

ENVE 8999. Non-Candidate Research. [Formerly ENVE 379] Research prior to entry into candidacy (completion of qualifying examination) and for special non-degree students. [Variable credit: 0-12]

ENVE 9999. Ph.D. Dissertation Research. [Formerly ENVE 399]

Computer Science

CS 1103. Introductory Programming for Engineers and Scientists. [Formerly CS 103] An introduction to problem solving on the computer. Intended for students other than computer science and computer engineering majors. Methods for designing programs to solve engineering and science problems using MATLAB. Generic programming concepts. FALL, SPRING. [3]

CS 1151. Computers and Ethics. [Formerly CS 151] Analysis and discussion of problems created for society by computers, and how these problems pose ethical dilemmas to both computer professionals and computer users. Topics include: computer crime, viruses, software theft, ethical implications of life-critical systems. FALL, SPRING. [3]

CS 2201. Program Design and Data Structures. [Formerly CS 201] Continuation of CS 1101. The study of elementary data structures, their associated algorithms and their application in problems; rigorous development of programming techniques and style; design and implementation of programs with multiple modules, using good data structures and good program style. Prerequisite: CS 1101. FALL, SPRING. [3]

CS 2204. Program Design and Data Structures for Scientific Computing. [Formerly CS 204] Data Structures and their associated algorithms in application to computational problems in science and engineering. Time and memory complexity; dynamic memory structures; sorting and searching; advanced programming and program-solving strategies; efficient software library use. Prerequisite: CS 1101 or 1103. SPRING. [3]

CS 2212. Discrete Structures. [Formerly CS 212] A broad survey of the mathematical tools necessary for an understanding of computer science. Topics covered include an introduction to sets, relations, functions, basic counting techniques, permutations, combinations, graphs, recurrence relations, simple analysis of algorithms, O-notation, Boolean algebra, propositional calculus, and numeric representation. Prerequisite: A course in computer science or two semesters of calculus. FALL, SPRING. [3]

CS 2231. Computer Organization. [Formerly CS 231] The entire hierarchical structure of computer architecture, beginning at the lowest level with a simple machine model (e.g., a simple von Neumann machine). Processors, process handling, IO handling, and assembler concepts. Graduate credit not given for computer science majors. Prerequisite: CS 2201; corequisite: ECE 2116, 2116L. FALL, SPRING. [3]

CS 3250. Algorithms. [Formerly CS 250] Advanced data structures, systematic study and analysis of important algorithms for searching; sorting; string processing; mathematical, geometrical, and graph algorithms, classes of P and NP, NP-complete and intractable problems. Prerequisite: CS 2201, CS 2212. FALL, SPRING. [3]

CS 3251. Intermediate Software Design. [Formerly CS 251] High quality development and reuse of architectural patterns, design patterns, and software components. Theoretical and practical aspects of developing, documenting, testing, and applying reusable class libraries and object-oriented frameworks using object-oriented and component-based programming languages and tools. Prerequisite: CS 2201. FALL, SPRING. [3]

CS 3258. Introduction to Computer Graphics. [Formerly CS 258] Featuring 2D rendering and image-based techniques, 2D and 3D transformations, modeling, 3D rendering, graphics pipeline, ray-tracing, and texture-mapping. Prerequisite: MATH 2410, 2400, 2600 or 2591; CS 2251. FALL. [3]

CS 3259. Project in Computer Animation Design and Technology. [Formerly CS 259] Introduction to the principles and techniques of computer animation. Students work in small groups on the design, modeling, animation, and rendering of a small computer animation project. Topics include storyboarding, camera control, skeletons, inverse kinematics, splines, keyframing, motion capture, dynamic simulation, particle systems, facial animation, and motion perception. Prerequisite: CS 2201; one of MATH 2410, 2400, 2600, or 2591. FALL. [3]

CS 3265. Introduction to Database Management Systems. [Formerly CS 265] Logical and physical organization of databases. Data models and query languages, with emphasis on the relational model and its semantics. Concepts of data independence, security, integrity, concurrency. Prerequisite: CS 2201. [3]

CS 3270. Programming Languages. [Formerly CS 270] General criteria for design, implementation, and evaluation of programming languages. Historical perspective. Syntactic and semantic specification, compilations, and interpretation processes. Comparative studies of data types and data control, procedures and parameters, sequence

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3274</td>
<td>Modeling and Simulation</td>
<td>Formerly CS 274 General theory of modeling and simulation of a variety of systems: physical processes, computer systems, biological systems, and manufacturing processes. Principles of discrete-event, continuous, and hybrid system modeling, simulation algorithms for the different modeling paradigms, methodologies for constructing models of a number of realistic systems, and analysis of system behavior. Computational issues in modeling and analysis of systems. Stochastic simulations. Prerequisite: CS 2201. [3]</td>
</tr>
<tr>
<td>CS 3276</td>
<td>Compiler Construction</td>
<td>Formerly CS 276 Review of programming language structures, translation, loading, execution, and storage allocation. Compilation of simple expressions and statements. Organization of a compiler including compile-time and run-time symbol tables, lexical scan, syntac scan, object code generation, error diagnostics, object code optimization techniques, and overall design. Use of a high-level language to write a complete compiler. Prerequisite: CS 2231. [3]</td>
</tr>
<tr>
<td>CS 3288</td>
<td>Principles of Operating Systems II</td>
<td>Formerly CS 282 Projects involving modification of a current operating system. Lectures on memory management policies, including virtual memory. Protection and sharing of information, including general models for implementation of various degrees of sharing. Resource allocation in general, including deadlock detection and prevention strategies. Introduction to operating system performance measurement, for both efficiency and logical correctness. Two hours lecture and one hour laboratory. Prerequisite: CS 3281. [3]</td>
</tr>
<tr>
<td>CS 3860</td>
<td>Undergraduate Research</td>
<td>Formerly CS 240A Open to qualified majors with consent of instructor and adviser. No more than 6 hours may be counted towards the computer science major. Prerequisite: CS 2231. FALL, SPRING. [Variable credit: 1-3 each semester, not to exceed a total of 6]</td>
</tr>
<tr>
<td>CS 3861</td>
<td>Undergraduate Research</td>
<td>Formerly CS 240B Open to qualified majors with consent of instructor and adviser. No more than 6 hours may be counted towards the computer science major. Prerequisite: CS 2231. FALL, SPRING. [Variable credit: 1-3 each semester, not to exceed a total of 6]</td>
</tr>
<tr>
<td>CS 3890</td>
<td>Special Topics in Computer Science</td>
<td>Formerly CS 242 [Variable credit: 1-3]</td>
</tr>
<tr>
<td>CS 3891</td>
<td>Special Topics</td>
<td>Formerly CS 291 [Variable credit: 1-3 each semester] [Offered on demand]</td>
</tr>
<tr>
<td>CS 3892</td>
<td>Special Topics</td>
<td>Formerly CS 292 [Variable credit: 1-3 each semester] [Offered on demand]</td>
</tr>
<tr>
<td>CS 4260</td>
<td>Artificial Intelligence</td>
<td>Formerly CS 260 Introduction to the principles and programming techniques of artificial intelligence. Strategies for searching, representation of knowledge and automatic deduction, learning, and adaptive systems. Survey of applications. Prerequisite: CS 3250. FALL. [3]</td>
</tr>
<tr>
<td>CS 4269</td>
<td>Project in Artificial Intelligence</td>
<td>Formerly CS 269 Students work in small groups on the specification, design, implementation, and testing of a sizeable AI software project. Projects (e.g., an ‘intelligent’ game player) require that students address a variety of AI subject areas, notably heuristic search, uncertain reasoning, planning, knowledge representation, and learning. Class discussion highlights student progress, elaborates topics under investigation, and identifies other relevant topics (e.g., vision) that the project does not explore in depth. Prerequisite: CS 4260. SPRING. [3]</td>
</tr>
<tr>
<td>CS 4279</td>
<td>Software Engineering Project</td>
<td>Formerly CS 279 Students work in teams to specify, design, implement, document, and test a nontrivial software project. The use of CASE (Computer Assisted Software Engineering) tools is stressed. Prerequisite: CS 4278. SPRING. [3]</td>
</tr>
<tr>
<td>CS 4283</td>
<td>Computer Networks</td>
<td>Formerly CS 283 Computer communications. Network (Internet) architecture. Algorithms and protocol design at each layer of the network stack. Cross-layer interactions and performance analysis. Network simulation tools. Lab and programming assignments. Credit given for only one of CS 4283 or EECE 4371. Prerequisite: CS 3281 or EECE 4376. [3]</td>
</tr>
<tr>
<td>CS 4284</td>
<td>Computer Systems Analysis</td>
<td>Formerly CS 284 Techniques for evaluating computer system performance with emphasis upon application. Topics include measurement and instrumentation techniques, benchmarking, simulation techniques, elementary queuing models, data analysis, operation analysis, performance criteria, case studies. Project involving a real computer system. Prerequisite: CS 3281. [3]</td>
</tr>
<tr>
<td>CS 4287</td>
<td>Principles of Cloud Computing</td>
<td>Fundamental concepts of cloud computing, different service models, techniques for resource virtualization, programming models, management, mobile cloud computing, recent advances, and hands-on experimentation. Prerequisite: CS 3281. [3]</td>
</tr>
<tr>
<td>CS 4959</td>
<td>Computer Science Project Seminar</td>
<td>Formerly CS 297 Elements of professional engineering practice, professional education and lifelong learning, intellectual property and software patents, open source and crowd source software development, liability, soft risk safety and security, privacy issues, interdisciplinary teams and team tools, professional organization, careers, entrepreneurship, human computer interaction. Prerequisite: CS 3281. FALL. [1]</td>
</tr>
<tr>
<td>CS 5250</td>
<td>Algorithms</td>
<td>Formerly listed as CS 3250 Advanced data structures, systematic study and analysis of important algorithms for searching; sorting; string processing; mathematical, geometrical, and graph algorithms, classes of P and NP, NP-complete and intractable problems. No credit for students who have earned credit for CS 3250. FALL, SPRING. [3]</td>
</tr>
<tr>
<td>CS 5251</td>
<td>Intermediate Software Design</td>
<td>Formerly listed as CS 3251 High quality development and reuse of architectural patterns, design patterns, and software components. Theoretical and practical aspects of developing, documenting, testing, and applying reusable class libraries and object-oriented frameworks using object-oriented and component-based programming languages and tools. No credit for students who have earned credit for CS 3251. FALL, SPRING. [3]</td>
</tr>
<tr>
<td>CS 5252</td>
<td>Theory of Automata, Formal Languages, and Computa-</td>
<td>Also listed as CS 3252 Finite-state machines and regular expressions. Context-free grammars and languages. Pushdown automata. TURING machines. Undecidability. The Chomsky hierarchy. Computational complexity. No credit for students who have earned credit for CS 3252. FALL, SPRING. [3]</td>
</tr>
<tr>
<td>CS 5258</td>
<td>Introduction to Computer Graphics</td>
<td>Also listed as CS 3258 Featuring 2D rendering and image-based techniques, 2D and 3D transformations, modeling, 3D rendering, graphics pipeline, ray-tracing, and texture-mapping. No credit for students who have earned credit for CS 3258. FALL. [3]</td>
</tr>
<tr>
<td>CS 5259</td>
<td>Project in Computer Animation Design and Technology</td>
<td>Also listed as CS 3259 Introduction to the principles and techniques of computer animation. Students work in small groups on the design, modeling, animation, and rendering of a small computer animation</td>
</tr>
</tbody>
</table>
project. Topics include storyboarding, camera control, skeletons, inverse kinematics, splines, keyframing, motion capture, dynamic simulation, particle systems, facial animation, and motion perception. No credit for students who have earned credit for CS 3259. FALL. [3]

CS 5280. Artificial Intelligence. (Also listed as CS 4260) Introduction to the principles and programming techniques of artificial intelligence. Strategies for searching, representation of knowledge and automatic deduction, learning, and adaptive systems. Survey of applications. No credit for students who have earned credit for CS 4260. FALL. [3]

CS 5285. Introduction to Database Management Systems. (Also listed as CS 3269) Logical and physical organization of databases. Data models and query languages, with emphasis on the relational model and its semantics. Concepts of data independence, security, integrity, concurrency. No credit for students who have earned credit for CS 3265. [3]

CS 5289. Project in Artificial Intelligence. (Also listed as CS 4269) Students work in small groups on the specification, design, implementation, and testing of a sizeable AI software project. Projects (e.g., an “intelligent” game player) require that students address a variety of AI subject areas, notably heuristic search, uncertain reasoning, planning, knowledge representation, and learning. Class discussion highlights student progress, elaborates topics under investigation, and identifies other relevant topics (e.g., vision) that the project does not explore in depth. No credit for students who have earned credit for CS 4269. SPRING. [3]

CS 5270. Programming Languages. (Also listed as CS 3270) General criteria for design, implementation, and evaluation of programming languages. Historical perspective. Syntactic and semantic specification, compilations, and interpretation processes. Comparative studies of data types and data control, procedures and parameters, sequence control, nesting, scope and storage management, run-time representations. Non-standard languages, problem-solving assignments in a laboratory environment. No credit for students who have earned credit for CS 3270. FALL. [3]

CS 5274. Modeling and Simulation. (Also listed as CS 3274) General theory of modeling and simulation of a variety of systems: physical processes, computer systems, biological systems, and manufacturing processes. Principles of discrete-event, continuous, and hybrid system modeling, simulation algorithms for the different modeling paradigms, methodologies for constructing models of a number of realistic systems, and analysis of system behavior. Computational issues in modeling and analysis of systems. Stochastic simulations. No credit for students who have earned credit for CS 3274. [3]

CS 5276. Compiler Construction. (Also listed as CS 3276) Review of programming language structures, translation, loading, execution, and storage allocation. Compilation of simple expressions and statements. Organization of a compiler including compile-time and run-time symbol tables, lexical scan, syntax scan, object code generation, error diagnostics, object code optimization techniques, and overall design. Use of a high-level language to write a complete compiler. No credit for students who have earned credit for CS 3276. [3]

CS 5278. Principles of Software Engineering. (Also listed as CS 4278) The nature of software. The object-oriented paradigm. Software life-cycle models. Requirements, specification, design, implementation, documentation, and testing of software. Object-oriented analysis and design. Software maintenance. No credit for students who have earned credit for CS 4278. FALL. [3]

CS 5279. Software Engineering Project. (Also listed as CS 4279) Students work in teams to specify, design, implement, document, and test a nontrivial software project. The use of CASE (Computer Assisted Software Engineering) tools is stressed. No credit for students who have earned credit for CS 4279. SPRING. [3]

CS 5282. Principles of Operating Systems II. (Also listed as CS 3282) Projects involving modification of a current operating system. Lectures on memory management policies, including virtual memory. Protection and sharing of information, including general models for implementation of various degrees of sharing. Resource allocation in general, including deadlock detection and prevention strategies. Introduction to operating system performance measurement, for both efficiency and logical correctness. Two hours lecture and one hour laboratory. No credit for students who have earned credit for CS 3282. [3]

CS 5283. Computer Networks. (Also listed as CS 4283) Computer communications. Network (Internet) architecture. Algorithms and protocol design at each layer of the network stack. Cross-layer interactions and performance analysis. Network simulation tools. Lab and programming assignments. No credit for students who have earned credit for CS 4283. [3]

CS 5284. Computer Systems Analysis. (Also listed as CS 3284) Techniques for evaluating computer system performance with emphasis upon application. Topics include measurement and instrumentation techniques, benchmarking, simulation techniques, elementary queueing models, data analysis, operation analysis, performance criteria, case studies. Project involving a real computer system. No credit for students who have earned credit for CS 4284. [3]

CS 5285. Network Security. (Also listed as CS 3285) Principles and practice of network security. Security threats and mechanisms. Cryptography, key management, and message authentication. System security practices and recent research topics. No credit for students who have earned credit for CS 4285. [3]

CS 5287. Principles of Cloud Computing. Fundamental concepts of cloud computing, different service models, techniques for resource virtualization, programming models, management, mobile cloud computing, recent advances, and hands-on experimentation. [3]

CS 5891. Special Topics. (Also listed as CS 3891) [Variable credit: 1-3 each semester] No credit for students who have earned credit for CS 3891. (Offered on demand)

CS 5892. Special Topics. (Also listed as CS 3892) [Variable credit: 1-3 each semester] No credit for students who have earned credit for CS 3892. (Offered on demand)

CS 6310. Design and Analysis of Algorithms. (Formerly CS 310) Set manipulation techniques, divide-and-conquer methods, the greedy method, dynamic programming, algorithms on graphs, backtracking, branch-and-bound, lower bound theory, NP-hard and NP-complete problems, approximation algorithms. Prerequisite: CS 3250. SPRING. [3]

CS 6311. Graph Algorithms. (Formerly CS 311) Algorithms for dealing with special classes of graphs. Particular emphasis is given to subclasses of perfect graphs and graphs that can be stored in a small amount of space. Interval, chordal, permutation, comparability, and circular-arc graphs; graph decomposition. Prerequisite: CS 6310 or MATH 4710. [3]

CS 6315. Automated Verification. (Formerly CS 315) Systems verification and validation, industrial case studies, propositional and predicate logic, syntax and semantics of computational tree and linear time logics, binary decision diagrams, timed automata model and real-time verification, hands on experience with model checking using the SMV, SPIN and UPPAAL tools, and state reduction techniques. [3]

CS 6320. Algorithms for Parallel Computing. (Formerly CS 320) Design and analysis of parallel algorithms for sorting, searching, matrix processing, FFT, optimization, and other problems. Existing and proposed parallel architectures, including SIMD machines, MIMD machines, and VLSI systolic arrays. Prerequisite: CS 6310. [3]

CS 6350. Artificial Neural Networks. (Formerly CS 350) Theory and practice of parallel distributed processing methods using networks of neuron-like computational devices. Neurobiological inspirations, attractor
networks, correlational and error-correction learning, regularization, unsupervised learning, reinforcement learning, Bayesian and information theoretic approaches, hardware support, and engineering applications. SPRING. [3]

CS 6351. Advanced Animation. [Formerly CS 351] Current research issues and problems in computer animation, with special focus on motion capture, dynamic simulation, and key-framing. Cloth, deformable bodies, natural phenomena, geometric algorithms, procedural techniques, facial animation, hair, autonomous characters, flocking, empirical evaluation, and interfaces for animation. Prerequisite: CS 3259. FALL. [3]

CS 6352. Human-Computer Interaction. [Formerly CS 352] An overview of human computer interaction and problems of current interest. Topics include: Human factors, GOMS, user interface design and evaluation, interaction modalities, distributed cognition, ubiquitous computing. A project involving design and evaluation will be performed. [3]

CS 6358. Computer Vision. [Formerly CS 358] The fundamentals of computer vision and techniques for image understanding and high-level image processing. Includes image segmentation, geometric structures, relational structures, motion, matching, inference, and vision systems. Prerequisite: EECE 6357. SPRING. [3]

CS 6359. Medical Image Registration. [Formerly CS 359] Foundations of medical image registration. Mathematical methods and practical applications. Image-to-image registration, image-to-physical registration, applications to image-guided procedures and the most commonly used imaging modalities with an emphasis on tomographic images. FALL. [3]

CS 6360. Advanced Artificial Intelligence. [Formerly CS 360] Discussion of state-of-the-art and current research issues in heuristic search, knowledge representation, deduction, and reasoning. Related application areas include: planning systems, qualitative reasoning, cognitive models of human memory, user modeling in ICALI, reasoning with uncertainty, knowledge-based system design, and language comprehension. Prerequisite: CS 4260 or equivalent. [3]

CS 6362. Machine Learning. [Formerly CS 362] An introduction to machine learning principles of artificial intelligence, stressing learning’s role in constraining search by augmenting and/or reorganizing memory. Topics include connectionist systems; concept learning from examples; operator, episode, and plan learning; problem-solving architectures that support learning; conceptual clustering; computer models of scientific discovery; explanation-based learning; and analogical reasoning. Psychological as well as computational interests in learning are encouraged. Prerequisite: CS 4260, CS 6360, or equivalent. SPRING. [3]

CS 6364. Intelligent Learning Environments. [Formerly CS 364] Theories and concepts from computer science, artificial intelligence, cognitive science, and education that facilitate designing, building, and evaluating computer-based instructional systems. Development and substantiation of the concept, architecture, and implementation of intelligent learning environments. Multimedia and web-based technology in teaching, learning, collaboration, and assessment. Prerequisite: CS 4260, CS 6360, or equivalent. SPRING. [3]

CS 6376. Foundations of Hybrid and Embedded Systems. [Formerly CS 376] Modeling, analysis, and design of hybrid and embedded systems. Heterogeneous modeling and design of embedded systems using formal models of computation, modeling and simulation of hybrid systems, properties of hybrid systems, analysis methods based on abstractions, reachability, and verification of hybrid systems. FALL. [3]

CS 6381. Distributed Systems Principles. [Formerly CS 381] Techniques and mechanisms in distributed system design, such as logical clocks, distributed consensus, distributed mutual exclusion, consistency models, fault tolerance and paradigms of communication. Contemporary distributed system case studies and open challenges. Prerequisite: CS 3281. [3]

CS 6384. Performance Evaluation of Computer Systems. [Formerly CS 384] Techniques for computer systems modeling and analysis. Topics covered include analytical modeling with emphasis on queueing network models, efficient computational algorithms for exact and approximate solutions, parameter estimation and prediction, validation techniques, workload characterization, performance optimization, communication and distributed system modeling. Prerequisite: CS 3281 or CS 6381. SPRING. [3]

CS 6385. Advanced Software Engineering. [Formerly CS 385] An intensive study of selected areas of software engineering. Topics may include CASE tools, formal methods, generative techniques, aspect-oriented programming, metrics, modeling, reuse, software architecture, testing, and open-source software. Prerequisite: CS 4278. FALL. [3]

CS 6386. System-Level Fault Diagnosis. [Formerly CS 386] An overview of the basic concepts of the theory of fault diagnosis and problems of current interest. Topics include the classical PMC and BGM models of fault diagnosis, hybrid (permanent and intermittent faults) models, diagnostic measures for one-step, sequential, and inexact diagnosis. Emphasis is on algorithmic techniques for solving the diagnosis and diagnosability problems in various models. Prerequisite: CS 6381. SPRING. [3]

CS 6387. Topics in Software Engineering. [Formerly CS 387] Topics may include empirical software engineering and open-source software engineering. Prerequisite: CS 4278 or consent of instructor. SPRING. [3]

CS 6388. Model-Integrated Computing. [Formerly CS 388] Model-Integrated Computing addresses the problems of designing, creating, and evolving information systems by providing rich, domain-specific modeling environments including model analysis and model-based program synthesis tools. Students are required to give a class presentation and prepare a project. FALL. [3]

CS 7999. Master’s Thesis Research. [Formerly CS 399] [1-3 each semester]

CS 8390. Individual Studies. [Formerly CS 390] Offered each term. [1-3]

CS 8395. Special Topics. [Formerly CS 395] [3]

CS 8396. Special Topics. [Formerly CS 396] [3]

CS 8991. Seminar. [Formerly CS 391] [1-3 each semester]

CS 8992. Seminar. [Formerly CS 392] [1-3 each semester]

CS 8999. Non-Candidate Research. [Formerly CS 399] Research prior to entry into candidacy (completion of qualifying examination) and for special non-degree students. [Variable credit 0-12]

CS 9999. Ph.D. Dissertation Research. [Formerly CS 399] [3]

Electrical Engineering

EECE 2116L. Digital Logic Laboratory. [Formerly EECE 116L] Laboratory for EECE 2116. One three-hour laboratory per week. Corequisite: EECE 2116. FALL, SPRING. [1]

EECE 2213L. Circuits II Laboratory. [Formerly EECE 213L] Laboratory for EECE 2213. One three-hour laboratory per week. Corequisite: EECE 2213. FALL, SPRING. [1]

EECE 2218. Microcontrollers. [Formerly EECE 218] Microprocessor and microcontroller architecture with emphasis on control applications. Usage of assembly language and interfacing with programs written in high-level languages. Interfacing and real-time I/O with 8-bit microprocessors, control algorithms, and networking with microcontrollers. Graduate credit only for non-majors. Prerequisite: EECE 2116, CS 1101 or CS 1103. Corequisite: EECE 2218L. SPRING. [3]

EECE 2218L. Microcontrollers Laboratory. [Formerly EECE 218L] Laboratory for EECE 2218. A small structured project is required. One three-hour laboratory per week. Graduate credit only for non-majors. Corequisite: EECE 2218. SPRING. [1]

EECE 3214. Signals and Systems. [Formerly EECE 214] Fundamental signals, systems, and linear algebra concepts necessary for the study of communications and control systems. Includes continuous-time and discrete-time signal and system concepts, Fourier analysis in both continuous and discrete-time, Z-transform, and the FFT. Prerequisite: EECE 2112. FALL, SPRING. [3]

EECE 3233. Electromagnetics. [Formerly EECE 233] Introduction to electromagnetic field theory. Maxwell’s equations are developed from the historical approach. Electromagnetic waves are discussed with regard to various media and boundary conditions. Graduate credit only for non-majors. Prerequisite: Physics 1602. Corequisite: MATH 2400. FALL. [3]

EECE 3235L. Electronics I Laboratory. [Formerly EECE 235L] Laboratory for EECE 3235. One three-hour laboratory per week. Corequisite: EECE 3235. FALL. [1]

EECE 3850. Independent Study. [Formerly EECE 203] Readings or projects on basic topics in electrical engineering or related fields under the supervision of the staff. Consent of instructor required. No more than 6 hours of EECE 3850 and 3851 may be applied toward graduation. [Variable credit: 1-3 each semester]

EECE 3851. Independent Study. [Formerly EECE 204] Readings or projects on basic topics in electrical engineering or related fields under the supervision of the staff. Consent of instructor required. No more than 6 hours of EECE 3850 and 3851 may be applied toward graduation. [Variable credit: 1-3 each semester]

EECE 3891. Special Topics. [Formerly EECE 291] [Variable credit: 1-3 each semester]

EECE 3892. Special Topics. [Formerly EECE 292] [Variable credit: 1-3 each semester]

EECE 4252. Signal Processing and Communications. [Formerly EECE 252] AM and FM modulation. Also, advanced topics in signal processing are treated. Prerequisite: EECE 3214. SPRING. [3]

EECE 4283. Principles and Models of Semiconductor Devices. [Formerly EECE 283] Physical principles of operation of the p-n junction, MOS field-effect transistor, and bipolar transistor. Fundamentals of charge transport, charge storage, and generation-recombination; application to the operation of MOSFET and BJT. Device modeling with emphasis on features and constraints of integrated circuit technologies. Prerequisite: EECE 3325. [3]

EECE 4284. Integrated Circuit Technology and Fabrication. [Formerly EECE 284] Introduction to monolithic integrated circuit technology. Understanding of basic semiconductor properties and processes that result in modern integrated circuit. Bipolar and MOSFET processes and structures. Elements of fabrication, design, layout, and applications as regards semiconductor microelectronic technologies. Prerequisite: EECE 3325. SPRING. [3]

EECE 4286. Audio Engineering. [Formerly EECE 286] Engineering aspects of high fidelity sound reproduction, with emphasis on digital audio and loudspeakers. Analog-to-digital and digital-to-analog conversion, data storage, perceptual coding, loudspeaker design. Prerequisite: EECE 2213, EECE 3235. [3]

EECE 4288. Optoelectronics. [Formerly EECE 288] Fundamentals and applications of light generation, propagation, and modulation in passive and active optoelectronic components. Waveguides, lasers, electro-optic modulators, and emerging optoelectronic technology for optical communication, computing, and sensing applications. Prerequisite: EECE 3233 or equivalent. SPRING. [3]

EECE 4353. Image Processing. [Formerly EECE 253] The theory of signals and systems is extended to two dimensions. Coverage includes filtering, 2-D FFTs, edge detection, and image enhancement. Three lectures and one laboratory period. FALL. [4]

EECE 4356. Digital Signal Processing. [Formerly EECE 256] Applications of Digital Signal Processing (DSP) chips to sampling, digital filtering, FFTs, etc. Three lectures and one laboratory period. Prerequisite: EECE 3214. SPRING. [4]

EECE 4371. Mobile and Wireless Networks. [Formerly EECE 261] Design, development, and applications of mobile applications and services. Topics include wireless technologies, smart phone programming, cloud computing services. Credit given for only one of EECE 4371 or CS 4283. Prerequisite: CS 2201 or equivalent programming experience. [3]

EECE 4376L. Embedded Systems Laboratory. [Formerly EECE 276L] Laboratory for EECE 4376. A team-oriented structured project is required. One three-hour laboratory per week. Corequisite: EECE 4376. FALL. [1]

EECE 4377. FPGA Design. [Formerly EECE 277] Design and applications of field-programmable gate arrays, Electronic Design Automation (EDA) tools for design, placement, and routing. Hardware description languages. Implementation of designs on prototype FPGA board. Prerequisite: EECE 2116. [3]

EECE 4385. VLSI Design. [Formerly EECE 285] Integrated circuit and fabrication techniques; CAD tools for design, layout, and verification; parasitic elements and their effects on circuit performance; system-level design experience is gained by completing design and layout phases of a project. Prerequisite: EECE 2116, EECE 3235. FALL. [3]

EECE 4950. Program and Project Management for EECE. [Formerly EECE 295] Methods for planning programs and projects. Organization structures and information management for project teams. Communications between project teams and clients, government agencies, and others. Motivational factors and conflict resolution. Budget/schedule control. Similar to ENGM 3700, but preparatory to the EECE senior design project course, EECE 4951. Not for graduate credit. Credit given for only one of ENGM 3700, CE 4400, or EECE 4950. Prerequisite: Senior standing. Corequisite: EECE 4959. FALL. [3]

EECE 4951. Electrical and Computer Engineering Design. [Formerly EECE 296] Based on product specifications typically supplied by industrial sponsors, teams of students responsible for the formulation, execution, qualification, and documentation of a culminating engineering design. The application of knowledge acquired from earlier coursework, both within and outside the major area, along with realistic technical, managerial, and budgetary constraints using standard systems engineering methodologies and practices. Not for graduate credit. Prerequisite: EECE 4950, at least one DE course, senior standing. SPRING. [3]

EECE 5218. Microcontrollers. (Also listed as EECE 2218) Microprocessor and microcontroller architecture with emphasis on control applications. Usage of assembly language and interfacing with programs written in high-level languages. Interfacing and realtime I/O with 8-bit microprocessors, control algorithms, and networking with microcontrollers. Graduate credit only for non-majors. No credit for students who have earned credit for EECE 2218. Corequisite: EECE 5218L. SPRING. [3]

EECE 5218L. Microcontrollers Laboratory. (Also listed as EECE 2218L) Laboratory for EECE 5218. A small structured project is required. One three-hour laboratory per week. Graduate credit only for non-majors. No credit for students who have earned credit for EECE 2218L. Corequisite: EECE 5218. SPRING. [1]

EECE 5233. Electromagnetics. (Also listed as EECE 3233) Introduction to electromagnetic field theory. Maxwell’s equations are developed from the historical approach. Electromagnetic waves are discussed with regard to various media and boundary conditions. Graduate credit only for non-majors. No credit for students who have earned credit for EECE 3233. FALL. [3]

EECE 5235. Electronics I. (Also listed as EECE 3235) Introduction to semiconductor devices and electronic circuits. Diodes, BJT and MOS transistors. Device models, modes of operation, biasing. Small-signal models, low-frequency analysis of single- and multi-stage analog amplifiers, simple amplifier design. Large signal models, dc analysis of digital circuits. Graduate credit only for non-majors. Corequisite: EECE 5235L. No credit for students who have earned credit for EECE 3235. FALL. [3]

EECE 5235L. Electronics I Laboratory. (Also listed as EECE 3235L) Laboratory for EECE 3235. One three-hour laboratory per week. Corequisite: EECE 5235. No credit for students who have earned credit for EECE 3235L. FALL. [1]

EECE 5252. Signal Processing and Communications. (Also listed as EECE 4252) AM and FM modulation and demodulation. Analog-to-digital and digital-to-analog conversion circuits. No credit for students who have earned credit for EECE 4252. SPRING. [3]

EECE 5257. Control Systems I. (Also listed as EECE 4257) Introduction to the theory and design of feedback control systems, steady-state and transient analysis, stability considerations. Model representation. State-variable models. No credit for students who have earned credit for EECE 4257. FALL. [3]

EECE 5267. Power System Analysis. (Also listed as EECE 4267) Analysis of large transmission and distribution networks. Analysis of power lines, load flow, short circuit studies, economic operation, and stability are introduced. No credit for students who have earned credit for EECE 4267. [3]

EECE 5275. Microelectronic Systems. (Also listed as EECE 4275) Active devices in the context of digital systems, with an emphasis on embedded systems integration. Characteristics and utilization of different digital integrated circuit families, common bus structures and protocols and realworld interfaces (comparators, A/D/A conversion). No credit for students who have earned credit for EECE 4275. SPRING. [3]

EECE 5283. Principles and Models of Semiconductor Devices. (Also listed as EECE 4283) Physical principles of operation of the p-n junction, MOS field-effect transistor, and bipolar transistor. Fundamentals of charge transport, charge storage, and generation-recombination; application to the operation of MOSFET and BJT. Device modeling with emphasis on features and constraints of integrated circuit technologies. No credit for students who have earned credit for EECE 4283. [3]

EECE 5284. Integrated Circuit Technology and Fabrication. (Also listed as EECE 4284) Introduction to monolithic integrated circuit technology. Understanding of basic semiconductor properties and processes that result in modern integrated circuit. Bipolar and MOSFET processes and structures. Elements of fabrication, design, layout, and applications as regards semiconductor microelectronic technologies. No credit for students who have earned credit for EECE 4284. SPRING. [3]

EECE 5286. Audio Engineering. (Also listed as EECE 4286) Engineering aspects of high fidelity sound reproduction, with emphasis on digital audio and loudspeakers. Analog-to-digital and digital-to-analog conversion, data storage, perceptual coding, loudspeaker design. No credit for students who have earned credit for EECE 4286. [3]

EECE 5287. Engineering Reliability. (Also listed as EECE 4287) Topics in engineering reliability with emphasis on electrical devices and systems. Reliability concepts and models. Risk analysis. Lifetime evaluation. System examples. No credit for students who have earned credit for EECE 4287. [3]

EECE 5288. Optoelectronics. (Also listed as EECE 4288) Fundamentals and applications of light generation, propagation, and modulation in passive and active optoelectronic components. Waveguides, lasers, electro-optic modulators, and emerging optoelectronic technology for
optical communication, computing, and sensing applications. No credit for students who have earned credit for EECE 4288. SPRING. [3]

EECE 5353. Image Processing. (Also listed as EECE 4353) The theory of signals and systems is extended to two dimensions. Coverage includes filtering, 2-D FFTs, edge detection, and image enhancement. Three lectures and one laboratory period. No credit for students who have earned credit for EECE 4353. FALL. [4]

EECE 5354. Computer Vision. (Also listed as EECE 4354) Vision is presented as a computational problem. Coverage includes theories of vision, inverse optics, image representation, and solutions to ill-posed problems. No credit for students who have earned credit for EECE 4354. [3]

EECE 5356. Digital Signal Processing. (Also listed as EECE 4356) Applications of Digital Signal Processing (DSP) chips to sampling, digital filtering, FFTs, etc. Three lectures and one laboratory period. No credit for students who have earned credit for EECE 4356. SPRING. [4]

EECE 5358. Control Systems II. (Also listed as EECE 4358) Modern control design. Discrete-time analysis. Analysis and design of digital control systems. Introduction to nonlinear systems and optimum control systems. Fuzzy control systems. Two lectures and one laboratory. No credit for students who have earned credit for EECE 4358. SPRING. [3]

EECE 5371. Mobile and Wireless Networks. (Also listed as EECE 4371) Design, development, and applications of mobile applications and services. Topics include wireless technologies, smart phone programming, cloud computing services. No credit for students who have earned credit for EECE 4371. [3]

EECE 5376. Embedded Systems. (Also listed as EECE 4376) Advanced course on the design and application of embedded microcontroller-based systems. Architecture and capabilities of advanced microcontrollers. Embedded system modeling, design, and implementation using real-time and event-driven techniques. A structured project is required. No credit for students who have earned credit for EECE 4376. Corequisite: EECE 5376L. FALL. [3]

EECE 5376L. Embedded Systems Laboratory. (Also listed as EECE 4376L) Laboratory for EECE 5376. A team-oriented structured project is required. One three-hour laboratory per week. Corequisite: EECE 5376. No credit for students who have earned credit for EECE 4376L. FALL. [1]

EECE 5377. FPGA Design. (Also listed as EECE 4377) Design and applications of field-programmable gate arrays, Electronic Design Automation (EDA) tools for design, placement, and routing. Hardware description languages. Implementation of designs on prototype FPGA board. No credit for students who have earned credit for EECE 4377. [3]

EECE 5380. Electronics II. (Also listed as EECE 4380) Integrated circuit analysis and design. High frequency operation of semiconductor devices. Frequency-response and feedback analysis of BJTs and MOSFET circuits, multi-stage frequency-compensated amplifier design. Transient analysis of BJTs and MOSFET circuits. Digital-to-analog and analog-to-digital conversion circuits. No credit for students who have earned credit for 4380. SPRING. [3]

EECE 5385. VLSI Design. (Also listed as EECE 4385) Integrated circuit and fabrication techniques; CAD tools for design, layout, and verification; parasitic elements and their effects on circuit performance; system-level design experience is gained by completing design and layout phases of a project. No credit for students who have earned credit for EECE 4385. FALL. [3]

EECE 5891. Special Topics. (Also listed as EECE 3891) No credit for students who have earned credit for EECE 3891. Variable credit: 1-3 each semester

EECE 5892. Special Topics. (Also listed as EECE 3892) Variable credit: 1-3 each semester No credit for students who have earned credit for 3892.

EECE 6301. Introduction to Solid-State Materials. (Formerly EECE 301) The properties of charged particles under the influence of an electric field, quantum mechanics, particle statistics, fundamental particle transport, and band theory of solids will be studied. FALL. [3]

EECE 6304. Radiation Effects and Reliability of Microelectronics. (Formerly EECE 304) The space radiation environment and effects on electronics, including basic mechanisms of radiation effects and testing issues. Total dose, single-event, high-dose-rate, and displacement damage radiation effects. Effects of defects and impurities on MOS long-term reliability. SPRING. [3]

EECE 6305. Topics in Applied Magnetics. (Formerly EECE 305) Selected topics in magnetism, magnetic properties of crystalline and non-crystalline materials; ferrite materials for electronics and microwave applications, resonance phenomena. Prerequisite: EECE 6302. [3]

EECE 6306. Solid-State Effects and Devices I. (Formerly EECE 306) The semiconductor equations are examined and utilized to explain basic principles of operation of various state-of-the-art semiconductor devices including bipolar and MOSFET devices. FALL. [3]

EECE 6321. Cyber-Physical Systems. Modeling, design, and analysis of cyber-physical systems that integrate computation and communication with physical systems. Modeling paradigms and models of computation, design techniques and implementation choices, model-based analysis and verification. Project that covers the modeling, design, and analysis of CPS. [3]

EECE 6341. Advanced Analog Electronics. (Formerly EECE 341) Analysis and design of analog electronics circuits with emphasis on integrated circuits. Topics include logic families, semiconductor memories, and the analog-digital interface. [3]

EECE 6342. Advanced Digital Electronics. (Formerly EECE 342) Analysis and design of digital electronic circuits with emphasis on integrated circuits. Topics include logic families, semiconductor memories, and the analog-digital interface. [3]

EECE 6343. Digital Systems Architecture. (Formerly EECE 343) Architectural descriptions of various CPU designs, storage systems, IO systems, parallel and von Neumann processors and interconnection networks will be studied. [3]

EECE 6354. Advanced Real-Time Systems. (Formerly EECE 354) Fundamental problems in real-time systems, with focus on modeling, analysis, and design. Topics include: scheduling theory and techniques, time synchronization, time- and event-triggered systems, distributed architectures, advanced programming languages for real-time systems. Literature reviews and projects. [3]

EECE 6356. Intelligent Systems and Robotics. (Formerly EECE 356) Concepts of intelligent systems, AI robotics, and machine intelligence, using research books and papers. Emphasis on how AI, brain research, soft computing, and simulations are advancing robotics. Class projects. [3]

EECE 6357. Advanced Image Processing. (Formerly EECE 357) Techniques of image processing. Topics include image formation, digitization, linear shift-invariant processing, feature detection, and motion. Prerequisite: MATH 2300; programming experience. FALL. [5]

EECE 6358. Quantitative Medical Image Analysis. Image processing and statistical methods for quantitative analysis and interpretation of medical imaging data. Neuroimaging approaches related to brain structure, function, and connectivity. Massively univariate analysis
Engineering Management

ENGM 2440. Applied Behavioral Science. [Formerly ENGM 244] Leadership styles, power team building, conflict resolution, management resolution, interviewing techniques. Prerequisite: Sophomore standing. FALL, SPRING. SUMMER. [3]

ENGM 3000. Enterprise System Design. [Formerly ENGM 272] Design of complex enterprise systems and processes including enterprise requirements analysis, process-mapping, modeling, performance measurement, benchmarking, solution development, and change management. Prerequisite: ENGM 2210, junior standing. FALL, SPRING. [3]

ENGM 3100. Finance and Accounting for Engineers. [Formerly ENGM 251] Time value of money, capital budgeting and formation, financial accounting and reporting, double entry bookkeeping, taxation, performance ratio measurements, and working capital management. Probabilistic models for expected net present value and rate of return, dividend pricing models for alternative growth scenarios, cost and market based models for average cost of capital, taxation algorithms, and regression analysis for individual firm betas. Prerequisite: Junior standing. FALL, SPRING, SUMMER. [3]

ENGM 3200. Technology Marketing. [Formerly ENGM 242] Strategies for marketing technology-based products and services. Demand analysis, segmentation, distribution, and personal selling. Economic analysis from inception to end use. Prerequisite: ENGM 2210, junior standing. FALL. [3]

ENGM 3300. Technology Assessment and Forecasting. [Formerly ENGM 275] Methods of forecasting technological advancements and assessing their potential intended and unintended consequences. Delphi method, trend exploration, environmental monitoring, and scenario development. Prerequisite: Junior standing. SPRING. [3]

ENGM 3350. Organizational Behavior. [Formerly ENGM 264] Study of the factors that impact how individuals and groups interact and behave within organizations, and how organizations respond to their environment. Motivation theory, communication within organizations, group dynamics, conflict management, decision making, power, strategic planning, organizational culture, and change. Focus on utilizing analytical tools to understand organizations: symbolic, political, human resources, and structural. Prerequisite: ENGM 2440. [3]

ENGM 3600. Technology-Based Entrepreneurship. [Formerly ENGM 253] Identification and evaluation of opportunities: risks faced by entrepreneurs, market assessment, capital requirements, venture capital acquisition, legal structures, tax implications for sharing technology-based businesses. Prerequisite: Junior standing. FALL. [3]

ENGM 3650. Operations and Supply Chain Management. [Formerly ENGM 254] Manufacturing strategy, process analysis, product and process design, total quality management, capacity planning, inventory control, supply chain design, and advanced operations topics. Modeling and analysis using cases and spreadsheets. Prerequisite: Junior standing. FALL. [3]

ENGM 3700. Program and Project Management. [Formerly ENGM 274] Scheduling, cost estimation/predictions, network analysis, optimization, resource/load leveling, risk/mitigation, quality/testing, international projects. Term project required. Provides validated preparation for the Project Management Institute CAPM certification for undergraduates or the PMP for graduate students. Credit given for only one of ENGM 3700, CE 4400, or EECE 4950. Prerequisite: Junior standing. FALL, SPRING. SUMMER. [3]

ENGM 3850. Independent Study. [Formerly ENGM 298] Readings or projects on topics in engineering management under the supervision of the ENGM faculty. Consent of instructor required. FALL, SPRING. [1-3 each semester, not to exceed a total of 3].

ENGM 3851. Independent Study. [Formerly ENGM 291] [variable credit: 0-12]

ENGM 3890. Special Topics. [Formerly ENGM 291] [Variable credit: 1-3 each semester]

ENGM 3891. Special Topics. [Formerly ENGM 292] [Variable credit: 1-3 each semester]

ENGM 4500. Product Development. [Formerly ENGM 276] Project-based course focused on the methods for managing the design, development, and commercialization of new products. Generating product concepts, developing a prototype strategy, modeling financial returns, securing intellectual property, designing retail packaging, and performing market testing to establish an optimal price. Teams include Engi-
Engineering and MBA students. Prerequisite: ENGM 2210; ENGM 3700 or CE 4400 or EECE 4950; junior or senior standing. SPRING. [4]

ENGM 4951. Engineering Management Capstone Project. [Formerly ENGM 296] Application of engineering management concepts through team projects sponsored by faculty or seed-stage technology companies. Thinking, analysis, and planning processes needed to commercialize a concept and develop a business plan for presentation to investors. Prerequisite: ENGM 2210; ENGM 3000 or 3010. Corequisite: ENGM 3700. SPRING. [3]

ENGM 5000. Enterprise System Design. (Also listed as ENGM 3000) Design of complex enterprise systems and processes including enterprise requirements analysis, process-mapping, modeling, performance measurement, benchmarking, solution development, and change management. No credit for students who have earned credit for ENGM 3000. FALL, SPRING. [3]

ENGM 5010. Systems Engineering. (Also listed as ENGM 3010) Fundamental considerations associated with the engineering of large-scale systems. Models and methods for systems engineering and problem solving using a systems engineering approach. No credit for students who have earned credit for ENGM 3010. FALL, SPRING. [3]

ENGM 5100. Finance and Accounting for Engineers. (Also listed as ENGM 3100) Time value of money, capital budgeting and formation, financial accounting and reporting, double entry bookkeeping, taxation, performance ratio measurements, and working capital management. Probabilistic models for expected net present value and rate of return, dividend pricing models for alternative growth scenarios, cost and market-based models for average cost of capital, taxation algorithms, and regression analysis for individual firm betas. No credit for students who have earned credit for ENGM 3100. FALL, SPRING, SUMMER. [3]

ENGM 5200. Technology Marketing. (Also listed as ENGM 3200) Strategies for marketing technology-based products and services. Demand analysis, segmentation, distribution, and personal selling. Economic analysis from inception to end use. No credit for students who have earned credit for ENGM 3200. FALL. [3]

ENGM 5300. Technology Assessment and Forecasting. (Also listed as ENGM 3300) Methods of forecasting technological advancements and assessing their potential intended and unintended consequences. Delphi method, trend exploration, environmental monitoring, and scenario development. No credit for students who have earned credit for ENGM 3300. SPRING. [3]

ENGM 5400. Technology-Based Entrepreneurship. (Also listed as ENGM 3600) Identification and evaluation of opportunities: risks faced by entrepreneurs, market assessment, capital requirements, venture capital acquisition, legal structures, tax implications for sharing technology-based businesses. No credit for students who have earned credit for ENGM 3600. FALL. [3]

ENGM 5600. Operations and Supply Chain Management. (Also listed as ENGM 3650) Manufacturing strategy, process analysis, product and process design, total quality management, capacity planning, inventory control, supply chain design, and advanced operations topics. Modeling and analysis using cases and spreadsheets. No credit for students who have earned credit for ENGM 3650. FALL. [3]

ENGM 5700. Program and Project Management. (Also listed as ENGM 3700) Scheduling, cost estimation/predictions, network analysis, optimization, resource/load leveling, risk/mitigation, quality/test ing, international projects. Term project required. Provides validated preparation for the Project Management Institute CAPM certification for undergraduates or the PMP for graduate students. Credit given for only one of ENGM 3700 or 5700, CE 4400 or 5400, or EECE 4950. FALL, SPRING, SUMMER. [3]

Engineering Science

ES 0703. Preparatory Academics. [Formerly ES 103] To prepare students to enter an undergraduate engineering or science program. The content will vary from year to year and is usually offered in combination with other academic courses, English as a second language, and various PAVE programs. No credit toward a Vanderbilt degree. Prerequisite: Consent of instructor. SUMMER. [0]

ES 1115. Engineering Freshman Seminar. [Formerly ES 101] [1]

ES 1401. Introduction to Engineering, Module 1. [Formerly ES 140A] First of three required discipline-specific modules for Introduction to Engineering credit providing an introduction to engineering analysis and design. Discipline-specific modules selected based on individual choice. Students choose three different disciplines for the three modules and all three must be completed in one semester for full course credit. Emphasis is on contemporary engineering problem solving in a discipline-specific context. FALL. [1]

ES 1402. Introduction to Engineering, Module 2. [Formerly ES 140B] Continuation of ES 1401. ES 1401-1403 must be completed in one semester for full course credit. FALL. [1]

ES 1403. Introduction to Engineering, Module 3. [Formerly ES 140C] Continuation of ES 1402. ES 1401-1403 must be completed in one semester for full course credit. FALL. [1]

ES 2100W. Technical Communications. [Formerly ES 210W] Instruction and practice in written and oral communication. Emphasis is on organization and presentation of information to a specific audience for a specific purpose. Course will include writing and editing reports of various lengths, preparing and using visual aids, and presenting oral reports. Required of all EE, CmpE, and ES students. FALL, SPRING. [3]

ES 3230. Ships Engineering Systems. [Formerly ES 230] Ship characteristics and types, including design and control, propulsion, hydrodynamic forces, stability, compartmentation, and electrical and auxiliary systems. Theory and design of steam, gas turbine, and nuclear propulsion. FALL. [3]

ES 3231. Navigation. [Formerly ES 231] Naval piloting procedures. Charts, visual and electronic aids, and theory and operation of magnetic and gyro compasses; inland and international rules of the nautical road. The celestial coordinate system, including spherical trigonometry and application for navigation at sea. Environmental influences on naval operations. SPRING. [3]

ES 3300. Energy and Sustainability - An Engineering Approach. Uses basic understanding of mechanics, thermodynamics, and electrodynamics to describe primary and secondary energy generation and use. Emphasis on current applications, energy efficiency at both the source and demand sides, and future (near and long-term) energy scenarios. Various economic models are explored. Prerequisite: Junior standing. [3]

ES 3860. Undergraduate Research. [Formerly ES 248] Independent study under the direction of a faculty member with expertise in the area of study. FALL, SPRING. [1-3 each semester, not to exceed a total of 3]

ES 3890. Special Topics. [Formerly ES 290] Technical elective courses of special current interest. No more than six semester hours of these courses may be credited to the student’s record. Prerequisite: Consent of instructor. FALL, SPRING. [1-3]
Overseas Study Programs

FNTE 0800. France—GA Tech Lorraine. [Formerly FNTE 250]
FNTE 0801. Germany—Dresden. [Formerly FNTE 252]
FNTE 0802. Mexico—Guadalajara. [Formerly FNTE 254]
FNTE 0803. China—Hong Kong CUHK. [Formerly FNTE 256]
FNTE 0804. Singapore—Natl. U. Singapore. [Formerly FNTE 258]
FNTE 0805. Hungary—Budapest BUTE. [Formerly FNTE 260]
FNTE 2056. Italy—Turin Pol diTorino. [Formerly FNTE 262]
FNTE 2057. China—Hong Kong HKUST. [Formerly FNTE 264]
FNTE 2058. Spain—Madrid Engineering (IES). [Formerly FNTE 266]
FNTE 2059. Israel—Tel Aviv Engineering (BU). [Formerly FNTE 268]
FNTE 2099. Graduate Study. [Formerly FNTE 299] Place marker course for dual degree students.

Materials Science and Engineering

MSE 1500. Materials Science I. [Formerly MSE 150] Concepts of materials science developed from an understanding of the atomic and molecular structure of materials and their relationship to the properties of matter. Mechanical, electrical, physical, chemical, and magnetic properties of metals, ceramics, organics, composites, and semiconductors are covered. Corequisite: MSE 1500L. SPRING. [3]

MSE 1500L. Materials Science Laboratory. [Formerly MSE 150L] Laboratory for MSE 1500. One three-hour laboratory per week. Corequisite: MSE 1500. SPRING. [1]

MSE 2500. Materials Science II. [Formerly MSE 250] A study of engineering materials that includes microstructure and property characterization, materials selection, failure analysis, modern processing methods, and an introduction to nanostructured materials. Case studies and challenge based learning will be used to develop structure-processing concepts for the practice of materials science and engineering. Prerequisite: MSE 1500. FALL. [3]

MSE 3850. Materials Science and Engineering Seminar. [Formerly MSE 2098] Involving individual experimental, analytical, or design projects. A written final report is required. FALL. [Variable credit 1-3]

MSE 3851. Materials Science and Engineering Undergraduate Research. [Formerly MSE 209C] Open to selected senior engineering students wanting to do independent research. A formal written report is required. SPRING. [3]

MSE 3889. Special Topics. [Formerly MSE 210A] Technical elective courses of special current interest. No more than two semesters of this course may be credited to the student’s record. [Variable credit: 1-3 each semester]

MSE 3890. Special Topics. [Formerly MSE 210B] Technical elective courses of special current interest. No more than two semesters of this course may be credited to the student’s record. Prerequisite: Consent of instructor. [Variable credit: 1-3 each semester] (Offered on demand)

MSE 6310. Atomic Arrangements in Solids. [Formerly MSE 310] A basic understanding of the atomic arrangements observed in metals, ceramics, semiconductors, glasses, and polymers. Lattice geometry and crystal symmetry are discussed in detail and these concepts are used to describe important crystal structures. Nanocrystalline materials are also covered. An introduction to scattering theory and diffraction phenomena provides insight into the analytical methods used by materials scientists for structural characterization. FALL. [3]

MSE 6391. Special Topics. [Formerly MSE 391] Based on faculty research projects and highly specialized areas of concentration. FALL, SPRING. [Variable credit: 1-3 each semester]

MSE 6392. Special Topics. [Formerly MSE 392] Based on faculty research projects and highly specialized areas of concentration. FALL, SPRING. [Variable credit: 1-3 each semester]

MSE 7999. Master’s Thesis Research. [Formerly MSE 369]

MSE 8991. Seminar. [Formerly MSE 397] A required noncredit course for all graduate students in the program. Topics of special interest consolidating the teachings of previous courses by considering topics which do not fit simply into a single course category. FALL, SPRING. [0] Staff.

MSE 8992. Seminar. [Formerly MSE 398] A required noncredit course for all graduate students in the program. Topics of special interest consolidating the teachings of previous courses by considering topics which do not fit simply into a single course category. FALL, SPRING. [0] Staff.

MSE 8999. Non-Candidate Research. [Formerly MSE 379] Research prior to entry into candidacy (completion of qualifying examination) and for special non-degree students. [Variable credit: 0-12]

MSE 9999. Ph.D. Dissertation Research. [Formerly MSE 399]

Mechanical Engineering

ME 1150. Automotive Components Seminar. [Formerly ME 150] General automotive knowledge for engineering and design considerations. Basic component function, terminology and design. Suspension (including suspension kinematics), steering (including steering geometry), driveline, transmission, engine and braking. Discussion and in-class participation. [1]

ME 1151. Laboratory in Machining. [Formerly ME 151] Introduction to machining and fabrication of metals and plastics. Fabrication, design and manufacturability of parts or components. [1]

ME 1152. Laboratory in Welding. [Formerly ME 152] Introduction to theory of welding processes and welding of metals. Design, fabrication, and manufacturability of parts or components using welding processes. [1]

ME 1153. Computer Aided Design. [Formerly ME 153] Introduction to the use of computers for solid modeling of machine parts and assemblies. [1]

ME 2160. Introduction to Mechanical Engineering Design. [Formerly ME 160] Design fundamentals, computer-aided design, machine fabrication techniques, technical drawing, team-based learning, and a comprehensive design project. Two lectures and one lab. Prerequisite: ES 1401-1403. FALL. [3]

ME 2190. Dynamics. [Formerly ME 190] The principles of dynamics (kinematics and kinetics) of particles and rigid bodies. Mechanical vibrations. Introduction to continuous media. Prerequisite: CE 2200, PHYS 1601. Corequisite: MATH 2300. FALL, SPRING, SUMMER. [3]

ME 2220. Thermodynamics. [Formerly ME 220] Application of the first and second laws to energy transformation processes and properties of technologically important materials. Prerequisite: PHYS 1601, MATH 2300. FALL, SPRING, SUMMER. [3]

ME 3204. Mechatronics. [Formerly ME 204] Design of analog and digital electromechanical sensors and actuators, signal and power electronics, and application of digital microcontrollers to mechatronic systems. Prerequisite: EECE 2112; CS 1101 or 1103. SPRING. [3]

ME 3224. Fluid Mechanics. [Formerly ME 224] Physical properties of fluids, surface tension, viscosity; fluid statics and dynamics; control volume analysis of mass, momentum, and energy; dimensional analysis, similitude, and modeling; viscous flows in pipes; drag and lift on immersed bodies. Prerequisite: ME 2190, MATH 2420. Credit not awarded for both ME 3224 and CE 3700. FALL. [3]

ME 3234. Systems Dynamics. [Formerly ME 234] Energy-based modeling of dynamic mechanical, electrical, thermal, and fluid systems to formulate linear state equations, including system stability, time domain response, and frequency domain techniques. Three lectures and one three-hour laboratory. Prerequisite: ME 2190, MATH 2420. FALL. [4]

ME 3248. Heat Transfer. [Formerly ME 248] Steady-state and transient heat transfer by conduction, forced and free convection and radiation, including heat transfer by boiling and condensing vapors. Application is made to practical design problems. Prerequisite: ME 2200, ME 3224. SPRING. [3]

ME 3841. Mechanical Engineering Project. [Formerly ME 209A] Under the direction of a faculty member, students conduct a research or design project culminating in an engineering report of the activities and findings. FALL, SPRING. [1]

ME 3842. Mechanical Engineering Project. [Formerly ME 209B] Under the direction of a faculty member, students conduct a research or design project culminating in an engineering report of the activities and findings. FALL, SPRING. [2]

ME 3860. Mechanical Engineering Undergraduate Research. [Formerly ME 208C] Under the direction of a faculty member, students conduct a research project. A formal, written report is required. FALL, SPRING. [3]

ME 3890. Special Topics. [Formerly ME 210] Technical elective courses of special current interest. No more than six semester hours of this course may be credited to the student’s record. FALL, SPRING, SUMMER. [Variable credit: 1-3 each semester] Offered on demand

ME 4213. Energetics Laboratory. [Formerly ME 213] Experimental methods in heat transfer, fluid mechanics, and thermodynamics as applied to energy conversion systems and their analyses. Prerequisite: Senior standing. FALL. [2]

ME 4221. Intermediate Thermodynamics. [Formerly ME 221] Application of principles of thermodynamics to vapor and gas cycles, mixtures, combustion, and compressible flow. Prerequisite: ME 2220. Corequisite: MATH 2420. [3]

ME 4226. Introduction to Gas Dynamics. [Formerly ME 226] An introduction to the study of compressible flow from subsonic to supersonic flow regimes. Includes shock waves, expansion waves, shock tubes, and supersonic airfoils. Prerequisite: ME 3224. [3]

ME 4236. Linear Control Theory. [Formerly ME 236] Classical and modern approaches to the analysis and design of single-input/single-output (SISO) and multiple-input/multiple-output (MIMO) linear time invariant control systems. Classical (frequency-domain) and modern (state-space) approaches to SISO and MIMO control, including optimal control methods. Credit is given for only one of ME 4236 or 5236. Prerequisite: ME 3234. FALL. [3]

ME 4258. Engineering Acoustics. [Formerly ME 258] The wave equation and its solutions; acoustic sources; reflection and transmission of sound; propagation in pipes, cavities, and waveguides; noise standards and effects of noise on people; principles of noise and vibration control; signal processing in acoustics; environmental noise measurement and control; and various contemporary examples. Prerequisite: MATH 2400 or 2420. [3]

ME 4259. Engineering Vibrations. [Formerly ME 259] Theory of vibrating systems and application to problems related to mechanical design. Topics include single degree of freedom systems subject to free, forced, and transient vibrations; systems with several degrees of freedom, methods of vibration suppression and isolation, and critical speed phenomena. Prerequisite: ME 2190, MATH 2420. [3]

ME 4260. Energy Conversion. [Formerly ME 260] Energy resources, use, and conservation are studied. The fundamentals of positive displacement machinery, turbo-machinery, and reactive mixture are introduced and used to examine various forms of power-producing systems. Prerequisite: ME 2220, ME 3224. [3]

ME 4261. Basic Airplane Aerodynamics. [Formerly ME 261] Study of the atmosphere; analysis of incompressible and compressible flows, shock waves, boundary layer and skin friction drag, lift and drag forces over airfoils and wings, and flight performance; aircraft stability and control, wing icing, and parachute-based recovery; history of flight and aerodynamics. Corequisite: ME 3224. [3]

ME 4263. Computational Fluid Dynamics and Multiphysics Modeling. [Formerly ME 263] Computational modeling of viscous fluid flows and thermal-fluid-structure interaction. Computational techniques including finite-difference, finite-volume, and finite-element methods; accuracy, convergence, and stability of numerical methods; turbulence modeling; rotating machinery; multiphase flows; and multiphysics modeling. Prerequisite: ME 3224. SPRING. [3]

ME 4264. Internal Combustion Engines. [Formerly ME 264] A study of the thermodynamics of spark ignition and compression ignition engines; gas turbines and jet propulsion. Prerequisite: ME 2220. [3]

ME 4265. Direct Energy Conversion. [Formerly ME 265] The principles and devices involved in converting other forms of energy to electrical energy. Conversion devices: electro-mechanical, thermoelectric, thermionic, fluid dynamic, and fuel cell. Prerequisite: ME 2220. [3]

ME 4275. Introduction to Finite Element Analysis. [Formerly ME 275] Development and solution of finite element equations for solid mechanics and heat transfer problems. Introduction to commercial finite element pre- and post-processing software. Two lectures and one three-hour laboratory each week. Prerequisite: CE 2205, MATH 2420. [3]

ME 4280. Advanced Dynamics of Mechanical Systems. [Formerly ME 280] Development of methods for formulating differential equations to model mechanical systems, including formalisms of Newton-Euler, Lagrange, and virtual work methods to two- and three-dimensional systems. Prerequisite: ME 2190, MATH 2420. [3]

ME 4284. Modeling and Simulation of Dynamic Systems. [Formerly ME 284] Incorporates bond graph techniques for energy-based...
lumped-parameter systems. Includes modeling of electrical, mechanical, hydraulic, magnetic and thermal energy domains. Emphasis on multi-domain interaction. Prerequisite: ME 3234. [3]

ME 4950. Design Synthesis. [Formerly ME 242] Development of the design process: problem definition, design specifications, solution identification, idea synthesis, modeling and simulation, and design completion. Critical elements include problem selection, idea synthesis, and proposal writing. Individual design synthesis study projects required. Prerequisite: ME 3202. FALL. [2]

ME 4951. Engineering Design Projects. [Formerly ME 243] Each student participates in a major group design project. Lectures will cover case studies and topics of current interest in design. Prerequisite: ME 4950. SPRING. [3]

ME 4959. Senior Engineering Design Seminar. [Formerly ME 297] Elements of professional engineering practice. Professionalism, licensing, ethics and ethical issues, intellectual property, contracts, liability, risk, reliability and safety, interdisciplinary teams and team tools, codes, standards, professional organizations, careers, entrepreneurship, human factors, and industrial design. Prerequisite: Senior standing. Corequisite: ME 4950. FALL. [1]

ME 5236. Linear Control Theory. [Formerly ME 336] (Also listed as ME 4236) Classical and modern approaches to the analysis and design of single-input/single-output (SISO) and multiple-input/multiple-output (MIMO) linear time invariant control systems. Classical (frequency-domain) and modern (state-space) approaches to SISO and MIMO control, including optimal control methods. Credit is given for only one of ME 4236 or ME 5236. [3]

ME 5251. Modern Manufacturing Processes. (Also listed as ME 4251) Introduction to manufacturing science and processes. A quantitative approach dealing with metals, ceramics, polymers, composites, and nanofabrication and microfabrication technologies. No credit for students who have earned credit for ME 4251. [3]

ME 5258. Engineering Acoustics. (Also listed as 4258) The wave equation and its solutions; acoustic sources; reflection and transmission of sound; propagation in pipes, cavities, and waveguides; noise standards and effects of noise on people; principles of noise and vibration control; signal processing in acoustics; environmental noise measurement and control; and various contemporary examples. [3]

ME 5259. Engineering Vibrations. (Also listed as ME 4259) Theory of vibrating systems and application to problems related to mechanical design. Topics include single degree of freedom systems subject to free, forced, and transient vibrations; systems with several degrees of freedom, methods of vibration suppression and isolation, and critical speed phenomena. No credit for students who have earned credit for ME 4259. [3]

ME 5260. Energy Conversion. (Also listed as ME 4260) Energy resources, use, and conservation are studied. The fundamentals of positive displacement machinery, turbo-machinery, and reactive mixture are introduced and used to examine various forms of power-producing systems. No credit for students who have earned credit for ME 4260. [3]

ME 5261. Basic Airplane Aerodynamics. (Also listed as ME 4261) Study of the atmosphere; analysis of incompressible and compressible flows, shock waves, boundary layer and skin friction drag, lift and drag forces over airfoils and wings, and flight performance; aircraft stability and control, wing icing, and parachute-based recovery; history of flight and aerodynamics. Corequisite: ME 3224. No credit for students who have earned credit for ME 4261. [3]

ME 5262. Environmental Control. (Also listed as ME 4262) A study of heating and cooling systems, energy conservation techniques, use of solar energy and heat pumps. No credit for students who have earned credit for ME 4262. [3]

ME 5263. Computational Fluid Dynamics and Multiphysics Modeling. (Also listed as ME 4263) Computational modeling of viscous fluid flows and thermal-fluid-structure interaction. Computational techniques including finite-difference, finite-volume, and finite-element methods; accuracy, convergence, and stability of numerical methods; turbulence modeling; rotating machinery; multiphase flows; and multiphysics modeling. No credit for students who have earned credit for ME 4263. SPRING. [3]

ME 5264. Internal Combustion Engines. (Also listed as ME 4264) A study of the thermodynamics of spark ignition and compression ignition engines; gas turbines and jet propulsion. No credit for students who have earned credit for ME 4264. [3]

ME 5265. Direct Energy Conversion. (Also listed as ME 4265) The principles and devices involved in converting other forms of energy to electrical energy. Conversion devices: electro-mechanical, thermoelectric, thermionic, fluid dynamic, and fuel cell. No credit for students who have earned credit for ME 4265. [3]

ME 5267. Aerospace Propulsion. (Also listed as ME 4267) Application of classical mechanics and thermodynamics to rocket and aircraft propulsion. Design and performance analysis of air-breathing and chemical rocket engines. Advanced propulsion systems for interplanetary travel. Contemporary issues in aerospace propulsion: space exploration, renewable fuels. No credit for students who have earned credit for ME 4267. [3]

ME 5271. Introduction to Robotics. (Also listed as ME 4271) History and application of robots. Robot configurations including mobile robots, Spatial descriptions and transformations of objects in three-dimensional space. Forward and inverse manipulator kinematics. Task and trajectory planning, simulation and off-line programming. No credit for students who have earned credit for ME 4271. [3]

ME 5275. Introduction to Finite Element Analysis. (Also listed as ME 4275) Development and solution of finite element equations for solid mechanics and heat transfer problems. Introduction to commercial finite element and pre- and post-processing software. Two lectures and one three-hour laboratory each week. No credit for students who have earned credit for ME 4275. [3]

ME 5280. Advanced Dynamics of Mechanical Systems. (Also listed as ME 4280) Development of methods for formulating differential equations to model mechanical systems, including formalisms of Newton-Euler, Lagrange, and virtual work methods to two- and three-dimensional systems. No credit for students who have earned credit for ME 4280. [3]

ME 5284. Modeling and Simulation of Dynamic Systems. (Also listed as ME 4284) Incorporates bond graph techniques for energy-based lumped-parameter systems. Includes modeling of electrical, mechanical, hydraulic, magnetic and thermal energy domains. Emphasis on multi-domain interaction. No credit for students who have earned credit for ME 4284. [3]

ME 7899. Master of Engineering Project. [Formerly ME 389]

ME 7999. Master's Thesis Research. [Formerly ME 369]

ME 8326. Gas Dynamics. [Formerly ME 326] Study of compressible fluid flow from subsonic to supersonic regimes in confined regions and past bodies of revolutions. Includes heat transfer, frictional effects, and real gas behavior. Prerequisite: ME 3224. [3]

ME 8327. Energy Conversion Systems. [Formerly ME 327] An advanced study of energy conversion systems that include turbomachinery, positive displacement machinery, solar energy collection and combustion, with consideration for optimizing the systems. [3]

ME 8331. Robot Manipulators. [Formerly ME 331] Dynamics and control of robot manipulators. Includes material on Jacobian matrix relating
velocities and static forces, linear and angular acceleration relationships, manipulator dynamics, manipulator mechanism design, linear and nonlinear control, and force control manipulators. Prerequisite: ME 4271. [3]

ME 8333. Topics in Stress Analysis. [Formerly ME 333] An investigation of thermal stress, transient stress, and temperatures in idealized structures; consideration of plasticity at elevated temperatures; and some aspects of vibratory stresses. [3]

ME 8340. Wireless Mechatronics. [Formerly ME 340] Design of mechatronic devices with emphasis on miniaturization and wireless transmission of data. Programming of wireless microcontrollers with data acquisition and transmission from sensors and to actuators. Group design project to simulate, fabricate, and test a miniaturized wireless robot. [3]

ME 8348. Convection Heat Transfer. [Formerly ME 348] A wide range of topics in free and forced convection is discussed. Solutions are carried out using analytical, integral, and numerical methods. Internal and external flows are considered for both laminar and turbulent flow cases. Convection in high speed flow is also studied. Prerequisite: ME 3248. [3]

ME 8352. Non-linear Control Theory. [Formerly ME 352] Introduction to the concepts of nonlinear control theory. Topics include phase plane analysis, nonlinear transformations, Lyapunov stability, and controllability/observability calculations. A multidimensional geometric approach to these problems is emphasized. Prerequisite: MATH 2410. [3]

ME 8353. Design of Electromechanical Systems. [Formerly ME 353] Analog electronic design for purposes of controlling electromechanical systems, including electromechanical sensors and actuators, analog electronic design of filters, state-space and classical controllers, and transistor-based servoamplifiers and high voltage amplifiers. Significant laboratory component with design and fabrication circuits to control electromechanical systems. Implementation of digital controllers. Prerequisite: ME 3234. [3]

ME 8359. Advanced Engineering Vibrations. [Formerly ME 359] The development and application of Lagrange’s equations to the theory of vibrations. Nonlinear systems and variable spring characteristics are analyzed by classical methods and by digital computer techniques. Applications to the design of high speed machines are emphasized. Prerequisite: ME 4259; MATH 3120, MATH 4110. [3]

ME 8363. Conduction and Radiation Heat Transfer. [Formerly ME 363] A comparative study of available methods for solution of single and multidimensional conduction heat transfer problems. Both steady and transient problems are considered. Mathematical and numerical methods are stressed. Radiant exchange between surfaces separated by non-participating media is studied. Numerical methods are developed and discussed for non-isothermal surfaces and combined radiation and conduction problems are solved. Prerequisite: ME 3248. [3]

ME 8366. Combustion. [Formerly ME 366] Introduction to combustion processes. Topics include combustion thermodynamics, chemical kinetics, premixed flame theory, diffusion flame theory, ignition and detonation. Prerequisite: ME 4221, ME 3224. [3]

ME 8391. Special Topics. [Formerly ME 391] A course based on faculty research projects and highly specialized areas of concentration. [Variable credit: 1-3 each semester]

ME 8393. Independent Study. [Formerly ME 393] Readings and/or projects on advanced topics in mechanical engineering under the supervision of the faculty. Consent of instructor required. [Variable credit: 1-3 each semester]

ME 8991. Seminar. [Formerly ME 397] [0]

ME 8999. Non-Candidate Research. [Formerly ME 379] Research prior to entry into candidacy (completion of qualifying examination) and for special non-degree students. [Variable credit 0-12]

ME 9999. Ph.D. Dissertation Research. [Formerly ME 399]

Nanoscience and Nanotechnology

NANO 3000. Materials Characterization Techniques in Nanoscale Engineering. [Formerly NANO 250] Principles and applications of advanced materials characterization techniques used to characterize specimens and engineered structures at the nano/microscale. Topics include x-ray diffraction analysis, optical microscopy, electron microscopy, surface probe techniques, focused ion-beam instruments, Rutherford backscatter analysis and chemical microanalytical techniques, treated both qualitatively and quantitatively. Lectures alternate with laboratory on a weekly basis. Prerequisite: MATH 1301; CHEM 1602 or MSE 1500. FALL. [3]

Scientific Computing

SC 3250. Scientific Computing Toolbox. [Formerly SC 250] Use of computational tools in multiple science and engineering domains. Simulations of complex physical, biological, social, and engineering systems, optimization and evaluation of simulation models, Monte Carlo methods, scientific visualization, high performance computing, or data mining. Prerequisite: CS 1101 or 1103; MATH 1100 or higher. FALL. [3]

SC 3260. High Performance Computing. Introduction to concepts and practice of high performance computing. Parallel computing, grid computing, GPU computing, data communication, high performance security issues, performance tuning on shared-memory-architectures. Prerequisite: CS 201 or 204. SPRING. [3]

SC 3841. Directed Study in Scientific Computing. [Formerly SC 293A] Participation in ongoing research projects under the direction of a faculty sponsor. Project must combine scientific computing tools and techniques with a substantive scientific or engineering problem. Consent of both the faculty sponsor and one Director of the SC minor is required. Prerequisite: SC 3250. [1-3 each semester]

SC 3842. Directed Study in Scientific Computing. [Formerly SC 293B] Participation in ongoing research projects under the direction of a faculty sponsor. Project must combine scientific computing tools and techniques with a substantive scientific or engineering problem. Consent of both the faculty sponsor and one Director of the SC minor is required. Prerequisite: SC 3250. [1-3 each semester]

SC 3843. Directed Study in Scientific Computing. [Formerly SC 293C] Participation in ongoing research projects under the direction of a faculty sponsor. Project must combine scientific computing tools and techniques with a substantive scientific or engineering problem. Consent of both the faculty sponsor and one Director of the SC minor is required. Prerequisite: SC 3250. [1-3 each semester]

SC 3851. Independent Study in Scientific Computing. [Formerly SC 295A] Development of a research project by the individual student under the direction of a faculty sponsor. Project must combine scientific computing tools and techniques with a substantive scientific or engineering problem. Consent of both the faculty sponsor and one Director of the SC minor is required. Prerequisite: SC 3250. [1-3 each semester]

SC 3852. Independent Study in Scientific Computing. [Formerly SC 295B] Development of a research project by the individual student under the direction of a faculty sponsor. Project must combine scientific computing tools and techniques with a substantive scientific or engineering
problem. Consent of both the faculty sponsor and one Director of the SC minor is required. Prerequisite: SC 3250. [1-3 each semester]

SC 3853. Independent Study in Scientific Computing. [Formerly SC 295C] Development of a research project by the individual student under the direction of a faculty sponsor. Project must combine scientific computing tools and techniques with a substantive scientific or engineering problem. Consent of both the faculty sponsor and one Director of the SC minor is required. Prerequisite: SC 3250. [1-3 each semester]

SC 3890. Special Topics in Scientific Computing. [Formerly SC 290] [1-3 each semester]

SC 5250. Scientific Computing Toolbox. (Also listed as SC 3250) Use of computational tools in multiple science and engineering domains. Simulations of complex physical, biological, social, and engineering systems, optimization and evaluation of simulation models, Monte Carlo methods, scientific visualization, high performance computing, or data mining. No credit for students who have earned credit for SC 3250. FALL. [3]

SC 5260. High Performance Computing. (Also listed as SC 3260) Introduction to concepts and practice of high performance computing. Parallel computing, grid computing, GPU computing, data communication, high performance security issues, performance tuning on shared-memory-architectures. SPRING. [3]

SC 5890. Special Topics in Scientific Computing. (Also listed as SC 3890) No credit for students who have earned credit for SC 3890. [1-3 each semester]
School of Engineering

PHILIPPE M. FAUCHET, Ph.D., Dean
K. ARTHUR OVERHOLSER, Ph.D., P.E., Senior Associate Dean
DAVID M. BASS, M.Ed., Associate Dean for Development and Alumni Relations
PETER T. CUMMINGS, Ph.D., Associate Dean for Research
E. DUO CANSEN, Ph.D., Associate Dean for Graduate Studies
CYNTHIA B. PASCAL, Ph.D., Associate Dean
JOHN R. VEILLETTE, Ph.D., Associate Dean for Preparatory Academics
JANIECE HARRISON, M.A., Associate Dean for Finance and Administration
MARY LOU O’KELLY, B.A., Senior Executive Secretary to the Dean
BURGESS MITCHELL, M.Ed., Assistant Dean for Student Services
CHRISTOPHER J. ROWE, Ed.D., Director, Division of General Engineering; Senior Aide to the Dean
ADAM W. MCKEEVER-BURGETT, M.Div., Academic Counselor

Named and Distinguished Professorships

DOUGLAS E. ADAMS, Distinguished Professor of Civil and Environmental Engineering; Daniel F. Flowers Chair
JAMES A. CADZOW, Centennial Professor of Electrical Engineering, Emeritus
PETER T. CUMMINGS, John R. Hall Professor of Chemical Engineering
BENOIT M. DAWANT, Cornelius Vanderbilt Chair in Engineering
DANIEL M. FLEETWOOD, Olin H. Landreth Professor of Engineering
KENNETH F. GALLOWAY, Distinguished Professor of Engineering
MICHAEL GOLDFARB, H. Fort Flowers Professor of Mechanical Engineering
JOHN C. GORE, Chancellor’s University Professor of Radiology and Radiological Sciences and Biomedical Engineering
THOMAS H. HARRIS, Orrin Henry Ingram Distinguished Professor of Engineering, Emeritus
GEORGE M. HORNBERGER, Distinguished University Professor; Craig E. Philip Professor of Engineering
ROBERT W. HOUSE, Orrin Henry Ingram Distinguished Professor of Engineering Management, Emeritus
M. DOUGLAS LEVAN, J. Lawrence Wilson Professor of Engineering
SANKARAN MAHADEVAN, John R. Murray Sr. Chair in Engineering
ANITA MAHADEVAN-JANSEN, Orrin H. Ingram Chair in Biomedical Engineering
ARTHUR M. MELLOR, Centennial Professor of Mechanical Engineering, Emeritus
SOKRATES T. PANTELIDES, University Distinguished Professor of Physics and Engineering
FRANK L. PARKER, Distinguished Professor of Environmental and Water Resources Engineering, Emeritus
PETER N. PINTAURO, H. Eugene McBrayer Professor of Chemical Engineering
RONALD D. SCHRIMPFF, Orrin Henry Ingram Professor of Engineering
RICHARD E. SPEECE, Centennial Professor of Civil and Environmental Engineering, Emeritus
JANOS SZTIPANOVITS, E. Bronson Ingram Distinguished Professor of Engineering
TAYLOR G. WANG, Centennial Professor of Materials Science and Engineering, Emeritus; Centennial Professor of Mechanical Engineering, Emeritus
JOHN P. WIKSWO, JR., Gordon A. Cain University Professor; A. B. Learned Professor of Living State Physics

Department Chairs

TODD D. GIORGIO, Biomedical Engineering
G. KANE JENNINGS, Chemical and Biomolecular Engineering
DOUGLAS E. ADAMS, Civil and Environmental Engineering
DANIEL M. FLEETWOOD, Electrical Engineering and Computer Science
ROBERT W. PITZ, Mechanical Engineering

Standing Committees and Councils

DIRECTORS OF GRADUATE STUDIES/MASTER OF ENGINEERING. E. Deyu J. Lu, Chair. Mark D. Does, DGS in BME; W. David Merryman, DGR; Clare M. McCabe, DGS in CHE; Bridge R. Rogers, DGR; Caglar Oskay, DGS in CE; Eugene J. LeBoeuf, DGR in Env; James H. Clarke, DGS in Env; Xenofon D. Koutsoukos, DGS in CS; Robert A. Reed, DGS in EE; Deyu Li, DGS in ME; Eva M. Harth, DGS in IMS.

REPRESENTATIVE TO THE FACULTY SENATE. W. David Merryman, Michael I. Miga, Scott A. Guelcher, Caglar Oskay, James E. Wittig, Xenofon D. Koutsoukos. Ex Officio: Philippe M. Fauchet.

SHOP COMMITTEE. Matthew Walker III, Matthew J. Lang, Timothy Holman, Thomas J. Withrow, Robert J. Webster III.

Faculty

MARK D. ABKOWITZ, Professor of Civil and Environmental Engineering; Professor of Engineering Management
B.S., M.S., Ph.D. (Massachusetts Institute of Technology 1974, 1976, 1980) [1987]

DOUGLAS E. ADAMS, Distinguished Professor of Civil and Environmental Engineering; Daniel F. Flowers Chair; Professor of Civil and Environmental Engineering; Professor of Mechanical Engineering; Chair of Civil and Environmental Engineering
B.S. (Cincinnati 1994); M.S. (Massachusetts Institute of Technology 1997); Ph.D. (Cincinnati 2000) [2013]

JULIE ADAMS, Associate Professor of Computer Science and Associate Professor of Computer Engineering

NICOLAS M. ADAMS, Research Assistant Professor of Biomedical Engineering
B.S. (Dixie State 2009); Ph.D. (Vanderbilt 2014) [2014]

MICHAEL A. ALLES, Research Professor of Electrical Engineering

ADAM W. ANDERSON, Associate Professor of Biomedical Engineering; Associate Professor of Radiology and Radiological Sciences

AMRUTUR V. ANILKUMAR, Professor of the Practice of Mechanical Engineering; Professor of the Practice of Aerospace Engineering

DANIEL ALLEN BALASUBRAMANIAN, Adjunct Assistant Professor of Computer Science; Research Scientist/Engineer of Institute for Software Integrated Systems
B.S. (Tennessee Technological 2004); M.S., Ph.D. (Vanderbilt 2008, 2011) [2011]

THEODORE BAPTY, Research Associate Professor of Electrical Engineering

RIZIA BARDHAN, Assistant Professor of Chemical and Biomolecular Engineering

ERIC J. BARTH, Associate Professor of Mechanical Engineering
B.S. (California, Berkeley 1994); M.S., Ph.D. (Georgia Institute of Technology 1996, 2000) [2000]

PRODYOT K. BASU, Professor of Electrical Engineering; Associate Professor of Radiology and Radiological Sciences

FRANZ J. BAUDENBACHER, Associate Professor of Biomedical Engineering

LEON M. BELLAN, Assistant Professor of Mechanical Engineering; Assistant Professor of Biomedical Engineering
B.S. (California Institute of Technology 2003); M.S., Ph.D. (Cornell 2007, 2008) [2013]

JAMES BENTLEY, Adjunct Professor of Materials Science and Engineering

DAVID A. BEREZOV, Associate Professor of the Practice of Engineering Management
B.S. (Syracuse 1975); M.B.A. (Vanderbilt 1980) [2000]

JOHN A. BERNS, Associate Professor of the Practice of Engineering Management
B.S. (Yale 1968); Ed.D. (Harvard 1975); M.B.A. (Chicago 1984); Ph.D. (Vanderbilt 1998) [1996]

BHARAT L. BHUVA, Professor of Electrical Engineering; Professor of Computer Engineering
B.S. (Maharaja Sayajirao [India] 1982); M.S., Ph.D. (North Carolina State 1984, 1987) [1987]

GAUTAM BISWAS, Professor of Computer Science; Professor of Computer Engineering; Professor of Engineering Management

ROBERT E. BODINE-HEIMER, Associate Professor of Computer Science; Associate Professor of Electrical Engineering

KIRILL BOLOTIN, Associate Professor of Physics; Associate Professor of Electrical Engineering; Assistant Professor of Electrical Engineering
B.S., M.S. (Moscow Institute of Physics and Technology [Russia] 1998, 2000); Ph.D. (Cornell 2006) [2009]

ALFRED B. BONDS III, Professor of Biomedical Engineering, Emeritus; Professor of Electrical Engineering, Emeritus; Professor of Computer Engineering, Emeritus
A.B. (Cornell 1968); M.S., Ph.D. (Northwestern 1972, 1974) [1980]

ALAN R. BOWERS, Associate Professor of Civil and Environmental Engineering

ARTHUR J. BRODERSEN, Professor of Electrical Engineering, Emeritus; Professor of Computer Engineering, Emeritus

KEVIN G. BROWN, Research Associate Professor of Civil and Environmental Engineering; Research Scientist/Engineer of Civil and Environmental Engineering

AMANDA K. BUCK, Instructor in Radiology and Radiological Sciences; Instructor in Biomedical Engineering
B.S. (Mississippi State 1997); Ph.D. (Georgia Institute of Technology 2005) [2012]

ARNOLD BURGER, Adjunct Professor of Physics; Adjunct Professor of Electrical Engineering

BRETT C. BYRAM, Assistant Professor of Biomedical Engineering
B.S. (Vanderbilt 2004); Ph.D. (Duke 2011) [2013]

JAMES A. CADZOW, Centennial Professor of Electrical Engineering, Emeritus; Professor of Computer Engineering, Emeritus
B.S., M.S. (SUNY, Buffalo 1958, 1963); Ph.D. (Cornell 1964) [1988]

JANEY S. CAMP, Research Assistant Professor of Civil and Environmental Engineering
B.S. (Motlow State Community 1999); B.S., M.S. (Tennessee Technological 2002, 2004); Ph.D. (Vanderbilt 2009) [2009]

CHARLES F. CASKEY, Assistant Professor of Radiology and Radiological Sciences; Assistant Professor of Biomedical Engineering
B.S. (Texas 2004); Ph.D. (California, Davis 2008) [2013]

LIFEI CHEN, Visiting Associate Professor of Mechanical Engineering
B.S., M.S., Ph.D. (Liaoning [China] 1999, 2004); Ph.D. (East China University of Science and Technology 2007) [2014]

ASHOK CHOUDHURY, Adjunct Professor of Materials Science and Engineering; Senior Commercialization Associate, Technology Transfer

ANN N. CLARKE, Adjunct Professor of Environmental Engineering
B.S. (Drexel 1968); Ph.D. (Vanderbilt 1975); M.A. (Johns Hopkins 1980) [2002]

JAMES H. CLARKE, Professor of the Practice of Civil and Environmental Engineering; Director, Graduate Studies in Environmental Engineering
B.A. (Rockford 1967); Ph.D. (Johns Hopkins 1973) [1980]

LOGAN W. CLEMENTS, Research Assistant Professor of Biomedical Engineering

GEORGE E. COOK, Professor of Electrical Engineering, Emeritus
B.E. (Vanderbilt 1960); M.S. (Tennessee 1961); Ph.D. (Vanderbilt 1965) [1963]

MICHAEL R. CORN, Adjunct Professor of Civil and Environmental Engineering
B.S. (Tennessee 1972); M.S. (Vanderbilt 1979) [2007]
JUDSON NEWBERN, Deputy Vice Chancellor, Facilities and Environmental Affairs; Professor of the Practice of Civil and Environmental Engineering B.A. (North Carolina State 1975); M.A. (Harvard 1978) [2008]

JACK H. NOBLE, Research Assistant Professor of Electrical Engineering and Computer Science; Research Assistant Professor of Hearing and Speech Sciences

REED A. OMARY, Carol D. and Henry P. Pendergrass Chair in Radiology and Radiological Sciences; Professor of Radiology and Radiological Sciences; Professor of Biomedical Engineering; Chair, Department of Radiology and Radiological Sciences

B.S., M.D. (Northwestern 1989, 1991); M.S. (Virginia 1994) [2012]

CAGLAR OSKAY, Associate Professor of Civil and Environmental Engineering; Associate Professor of Mechanical Engineering; Director, Graduate Studies in Civil Engineering

WILLIAM R. OTTE, Adjunct Assistant Professor of Computer Science; Research Scientist/Engineer of Institute for Software Integrated Systems

KNOWLES A. OVERHOLSER, Senior Associate Dean of the School of Engineering; Professor of Biomedical Engineering; Professor of Chemical Engineering

B.E. (Vanderbilt 1965); M.S., Ph.D. (Wisconsin 1966, 1969) [1971]

DAVID A. OWENS, Professor of the Practice of Management and Innovation; Professor of the Practice of Engineering Management

SOKRATES T. PANTELEIDES, University Distinguished Professor of Physics and Engineering; William A. and Nancy F. McMinn Professor of Physics; Professor of Electrical Engineering

FRANK L. PARKER, Distinguished Professor of Environmental and Water Resources Engineering, Emeritus; Professor of Civil and Environmental Engineering, Emeritus

S.B. (Massachusetts Institute of Technology 1948); M.S., Ph.D. (Harvard 1950, 1955) [1967]

CYNTHIA B. PASCHAL, Associate Dean; Associate Professor of Biomedical Engineering; Associate Professor of Radiology and Radiological Sciences

S.B., S.M. (Massachusetts Institute of Technology 1986, 1986); Ph.D. (Case Western Reserve 1992) [1992]

CHETAN A. PATIL, Adjunct Assistant Professor of Biomedical Engineering

B.S. (Case Western Reserve 2002); M.S., Ph.D. (Vanderbilt 2005, 2009) [2010]

JUDSON NEWBERN, Deputy Vice Chancellor, Facilities and Environmental Affairs; Professor of the Practice of Civil and Environmental Engineering B.A. (North Carolina State 1975); M.A. (Harvard 1978) [2008]

JACK H. NOBLE, Research Assistant Professor of Electrical Engineering and Computer Science; Research Assistant Professor of Hearing and Speech Sciences

REED A. OMARY, Carol D. and Henry P. Pendergrass Chair in Radiology and Radiological Sciences; Professor of Radiology and Radiological Sciences; Professor of Biomedical Engineering; Chair, Department of Radiology and Radiological Sciences

B.S., M.D. (Northwestern 1989, 1991); M.S. (Virginia 1994) [2012]

CAGLAR OSKAY, Associate Professor of Civil and Environmental Engineering; Associate Professor of Mechanical Engineering; Director, Graduate Studies in Civil Engineering

WILLIAM R. OTTE, Adjunct Assistant Professor of Computer Science; Research Scientist/Engineer of Institute for Software Integrated Systems

KNOWLES A. OVERHOLSER, Senior Associate Dean of the School of Engineering; Professor of Biomedical Engineering; Professor of Chemical Engineering

B.E. (Vanderbilt 1965); M.S., Ph.D. (Wisconsin 1966, 1969) [1971]

DAVID A. OWENS, Professor of the Practice of Management and Innovation; Professor of the Practice of Engineering Management

SOKRATES T. PANTELEIDES, University Distinguished Professor of Physics and Engineering; William A. and Nancy F. McMinn Professor of Physics; Professor of Electrical Engineering

FRANK L. PARKER, Distinguished Professor of Environmental and Water Resources Engineering, Emeritus; Professor of Civil and Environmental Engineering, Emeritus

S.B. (Massachusetts Institute of Technology 1948); M.S., Ph.D. (Harvard 1950, 1955) [1967]

CYNTHIA B. PASCHAL, Associate Dean; Associate Professor of Biomedical Engineering; Associate Professor of Radiology and Radiological Sciences

S.B., S.M. (Massachusetts Institute of Technology 1986, 1986); Ph.D. (Case Western Reserve 1992) [1992]

CHETAN A. PATIL, Adjunct Assistant Professor of Biomedical Engineering

B.S. (Case Western Reserve 2002); M.S., Ph.D. (Vanderbilt 2005, 2009) [2010]

VIRGINIA PENSABENE, Research Assistant Professor of Biomedical Engineering

B.S., M.S. (Pisa [Italy] 2005, 2005); Ph.D. (Genova [Italy] 2009) [2011]

RICHARD ALAN PETERS II, Associate Professor of Electrical Engineering

A.B. (Oberlin 1979); M.S., Ph.D. (Arizona 1985, 1988) [1988]

CRAIG E. PHILIP, Research Professor of Civil and Environmental Engineering

B.S.E. (Princeton 1975); M.S., Ph.D. (Massachusetts Institute of Technology 1980, 1980) [2015]

CARY L. PINT, Assistant Professor of Mechanical Engineering

B.S. (Northern Iowa 2005); M.S., Ph.D. (Rice 2009, 2010) [2012]

PETER N. PINTAURO Professor of Chemical and Biomolecular Engineering

B.S., M.S. (Pennsylvania 1973, 1975); Ph.D. (California, Los Angeles 1980) [2008]

DAVID W. PISTON, Professor of Biomedical Engineering; Adjunct Professor of Molecular Physiology and Biophysics

ROBERT W. PITZ, Professor of Mechanical Engineering; Chair of the Department of Mechanical Engineering

B.S. (Purdue 1973); M.S., Ph.D. (California, Berkeley 1975, 1981) [1986]

JOSEPH E. PORTER, Adjunct Assistant Professor of Computer Engineering

B.S., M.S. (Kentucky, Lexington 1997, 2005); Ph.D. (Vanderbilt 2011) [2011]

CHARLES W. POWERS, Professor of Environmental Engineering

NILANJAN SARKAR, Professor of Mechanical Engineering; Professor of Computer Engineering
B.E. (Calcutta [India] 1985); M.E. (Indian Institute of Science 1988); Ph.D. (Pennsylvania 1993) [2000]

STEPHEN R. SCHACH, Professor of Computer Science, Emeritus;
Professor of Computer Engineering, Emeritus

JOSEPH J. SCHLESINGER, Assistant Professor of Anesthesiology;
Assistant Professor of the Practice of Biomedical Engineering
B.A. (Loyola, New Orleans 2004); M.D. (Texas 2008) [2013]

DOUGLAS C. SCHMIDT, Professor of Computer Science; Professor of Computer Engineering; Associate Chair of Computer Science

KARL B. SCHNELLE, JR., Professor of Chemical and Environmental Engineering, Emeritus
B.S., M.S., Ph.D. (Carnegie Institute of Technology 1952, 1957, 1959) [1967]

RONALD D. SCHRIMPF, Orrin H. Ingram Chair in Engineering; Professor of Electrical Engineering; Director of the Institute for Space and Defense Electronics

ZHIAO SHI, Adjunct Assistant Professor of Computer Science; Education and Outreach Liaison
B.S. (Beijing University of Chemical Technology [China] 1996); M.S. (Kansas State 2000); Ph.D. (Tennessee 2006) [2007]

RICHARD G. SHIAVI, Professor of Biomedical Engineering, Emeritus;
Professor of Electrical Engineering, Emeritus
B.S. (Villanova 1965); M.S., Ph.D. (Drexel 1969, 1972) [1972]

VENIAMIN Y. SIDOROV, Research Assistant Professor of Biomedical Engineering
Ph.D. (Institute of Cell Biophysics [Russia] 2000) [2001]

BRIAN SIERAWSKI, Adjunct Assistant Professor of Electrical Engineering;
Staff Engineer 1 of Institute for Space and Defense Electronics
B.S.E., M.S.E. (Michigan 2002, 2004); Ph.D. (Vanderbilt 2011) [2015]

NABIL SIMAAN, Associate Professor of Mechanical Engineering;
Associate Professor of Otolaryngology; Associate Professor of Biomedical Engineering

AMBER L. SIMPSON, Adjunct Assistant Professor of Biomedical Engineering

MEYETTA SKALA, Assistant Professor of Biomedical Engineering
B.S. (Washington State 2002); M.S. (Wisconsin 2004); Ph.D. (Duke 2007) [2010]

SETH A. SMITH, Associate Professor of Radiology and Radiological Sciences; Associate Professor of Ophthalmology and Visual Sciences;
Associate Professor of Biomedical Engineering
B.S., B.S. (Virginia Polytechnic Institute 2001, 2001); Ph.D. (Johns Hopkins 2006) [2009]

RICHARD E. SPEECE, Centennial Professor of Civil and Environmental Engineering, Emeritus
B.S. (Fenn College 1956); M.S. (Yale 1958); Ph.D. (Massachusetts Institute of Technology 1961) [1968]

JEREMY P. SPINRAD, Associate Professor of Computer Science
B.S. (Yale 1978); M.S.E., M.A., Ph.D. (Princeton 1979, 1980, 1982) [1985]

ROBERT E. STAMMER, JR., Professor of Civil and Environmental Engineering, Emeritus
B.S. (Middle Tennessee State 1971); B.E. (Vanderbilt 1972); M.S. (Georgia Institute of Technology 1974); Ph.D. (Tennessee 1981) [1981]

CHARLES V. STEPHENSON II, Professor of Electrical Engineering, Emeritus

ALVIN M. STRAUSS, Professor of Mechanical Engineering
B.A. (CUNY, Hunter College 1964); Ph.D. (West Virginia 1968) [1982]

HAK-JOON SUNG, Assistant Professor of Biomedical Engineering;
Assistant Professor of Medicine
B.S., M.S. (Yonsei [Korea] 1999, 2001); Ph.D. (Georgia Institute of Technology 2004) [2009]

JANOS SZTIPANOVITS, Professor of Electrical Engineering; Professor of Computer Engineering; Director of the Institute for Software Integrated Systems
Diploma (Technical University of Budapest [Hungary] 1970); C.Sc. (Hungarian Academy of Science 1980); Ph.D. (Technical University of Budapest [Hungary] 1980) [1984]

MAZITA MOHD TAHIR, Assistant Professor of the Practice of Civil and Environmental Engineering;
Associate Director of PAVE
B.S. (Vanderbilt 2008) [2009]

ROBERT A. TAIRAS, Assistant Professor of the Practice of Computer Science
B.Sc. (Samford 1997); M.Sc., Ph.D. (Alabama, Birmingham 2005, 2010) [2013]

ROBERT D. TANNER, Professor of Chemical Engineering, Emeritus
B.S.E., B.S.E., M.S.E. (Michigan 1961, 1962, 1963); Ph.D. (Case Western Reserve 1967) [1972]

EDWARD L. THACKSTON, Professor of Civil and Environmental Engineering, Emeritus
B.E. (Vanderbilt 1961); M.S. (Illinois 1963); Ph.D. (Vanderbilt 1966) [1965]

WESLEY J. THAYER, Assistant Professor of Plastic Surgery; Assistant Professor of Orthopaedic Surgery and Rehabilitation;
Assistant Professor of Biomedical Engineering
B.S. (Tennessee 1993); Ph.D., M.D. (Emory 1999, 2000) [2008]

HAMP TURNER, Adjunct Professor of Civil and Environmental Engineering;

HEATH TURNER, Visiting Associate Professor of Chemical and Biomolecular Engineering

PIETRO VALDASTRI, Assistant Professor of Mechanical Engineering;
Assistant Professor of Medicine; Assistant Professor of Electrical Engineering
M.Sc. (Pisa [Italy] 2002); Ph.D. (Scuola Superiore Sant’Anna [Italy] 2006) [2011]

JASON G. VALENTINE, Assistant Professor of Mechanical Engineering;
Assistant Professor of Electrical Engineering
B.S. (Purdue 2003); Ph.D. (California, Berkeley 2010) [2010]

HANS A. VAN DER SLOOT, Adjunct Professor of Civil and Environmental Engineering

ANDREW J. VAN SCHAACK, Assistant Professor of Human and Organizational Development;
Assistant Professor of the Practice of Engineering Management

JOHN R. VEILLETTE, Associate Professor of the Practice of Civil Engineering;
Director of PAVE
B.S., M.S. (Connecticut 1980, 1982); Ph.D. (Vanderbilt 1987) [1987]

YEYEGNYI VOROBEYCHIK, Assistant Professor of Computer Science;
Assistant Professor of Computer Engineering
B.S. (Northwestern 2002); M.S.E., Ph.D. (Michigan 2004, 2008) [2013]

D. GREG WALKER, Associate Professor of Mechanical Engineering;
Associate Professor of Electrical Engineering

MATTHEW WALKER III, Associate Professor of the Practice of Biomedical Engineering
B.S. (Tennessee 1987); Ph.D. (Tulane 2000) [2011]

PEYONG WANG, Adjunct Associate Professor of Mechanical Engineering
B.S. (Beijing University of Aeronautics and Astronautics [China] 1998); M.S. (Tsinghua [China] 2001); Ph.D. (Vanderbilt 2006) [2009]

TAYLOR G. WANG, Centennial Professor of Mechanical Engineering, Emeritus;
Centennial Professor of Materials Science and Engineering, Emeritus;
Professor of Applied Physics, Emeritus

ROBERT J. WEBSTER III, Associate Professor of Mechanical Engineering;
Associate Professor of Otolaryngology; Assistant Professor of Urologic Surgery; Assistant Professor of Neurological Surgery; Assistant Professor of Electrical Engineering
B.S. (Clemson 2002); M.S., Ph.D. (Johns Hopkins 2004, 2007) [2008]
JOSEPH A. WEHRMEYER, Adjoint Associate Professor of Mechanical Engineering
JARED A. WEIS, Research Assistant Professor of Biomedical Engineering
B.S. (Washington University 2005); M.S., Ph.D. (Vanderbilt 2009, 2011) [2011]
SHARON M. WEISS, Associate Professor of Electrical Engineering; Associate Professor of Physics
EDWARD BRIAN WELCH, Assistant Professor of Radiology and Radiological Sciences; Assistant Professor of Biomedical Engineering
B.S. (Southern California 1998); Ph.D. (Mayo Medical 2003) [2004]
ROBERT A. WELLER, Professor of Electrical Engineering; Professor of Materials Science and Engineering; Professor of Physics
B.S. (Tennessee 1971); Ph.D. (California Institute of Technology 1978) [1987]
FRANCIS M. WELLS, Professor of Electrical Engineering, Emeritus
JAMES J. WERT, George A. Sloan Professor of Metallurgy, Emeritus; Professor of Mechanical Engineering, Emeritus
B.S., M.S., Ph.D. (Wisconsin 1957, 1958, 1961); P.E. [1961]
CHRISTOPHER JULES WHITE, Assistant Professor of Computer Science; Assistant Professor of Computer Engineering
B.A. (Brown 2001); M.S., Ph.D. (Vanderbilt 2006, 2008) [2011]
EDWARD J. WHITE, Professor of Electrical Engineering, Emeritus
JOHN-P. WIKSWO, JR., Gordon A. Cain University Professor; A. B. Learned Professor of Living State Physics; Professor of Biomedical Engineering; Professor of Molecular Physiology and Biophysics
B.A. (Virginia 1970); M.S., Ph.D. (Stanford 1973, 1975) [1977]
D. MITCHELL WILKES, Associate Professor of Electrical Engineering; Associate Professor of Computer Engineering
B.S. (Florida Atlantic 1981); M.S., Ph.D. (Georgia Institute of Technology 1984, 1987) [1987]
JOHN W. WILLIAMSON, Professor of Mechanical Engineering, Emeritus
B.S. (Oklahoma 1955); M.S., Ph.D. (Ohio State 1959, 1965) [1964]
JOHN-T. WILSON, Assistant Professor of Chemical and Biomolecular Engineering; Assistant Professor of Biomedical Engineering
B.S. (Ohio State 2002); Ph.D. (Georgia Institute of Technology 2009) [2014]
THOMAS J. WITHROW, Assistant Professor of the Practice of Mechanical Engineering
JAMES E. WITTIG, Associate Professor of Materials Science and Engineering
ARTHUR WITULSKI, Research Associate Professor of Electrical Engineering
RYSZARD J. WYCISK, Research Associate Professor of Chemical and Biomolecular Engineering
RAYMOND G. WYMER, Adjunct Professor of Civil and Environmental Engineering
B.S. (Memphis State 1950); M.S., Ph.D. (Vanderbilt 1953, 1953) [2007]
YIQIONG XU, Assistant Professor of Electrical Engineering; Assistant Professor of Physics
B.S. (Wuhan [China] 1997); Ph.D. (Chinese Academy of Sciences, Beijing 2002); Ph.D. (Rice 2006) [2009]
YUAN XUE, Associate Professor of Computer Science; Associate Professor of Computer Engineering
B.S. (Nanjing [China] 2000); M.S., Ph.D. (Shanghai Institute of Microsystem and Information Technology, CAS [China] 2006) [2008]