Identification of Intestinal Ischemia Using Magnetic Vector Projection Analysis

Jared. A. Sims BE¹, Robert Palmer BE MSN³, L. Alan. Bradshaw PhD¹,², William. O. Richards MD¹

Department of Surgery Vanderbilt University¹
Department of Physics Vanderbilt University²
Department of Biomedical Engineering Vanderbilt University³

Introduction:
Currently there is no noninvasive noncontact method to reliably diagnose mesenteric ischemia of the small bowel. The morbidity and mortality of mesenteric ischemia are high due to a delayed diagnosis and lack of specificity. It is believed an earlier diagnosis would improve patient outcomes.

The normal frequency of the Electrical Control Activity (ECA) of the small bowel is 8-12 cpm. Ischemia is known to cause a slowing of the frequency of the ECA of the small bowel.

A Superconducting QUantum Interference Device (SQUID) magnetometer has the ability to detect the magnetic fields produced by the ECA. The SQUID is the most sensitive flux to voltage converter available and provides a noninvasive noncontact modality for detection of the ECA and changes in the ECA during ischemia.

Experimental Methods:
A vector magnetometer was used to record the 3 orthogonal magnetic field components from the gastrointestinal tract in 4 male pigs. The SQUID and the pig are placed within a magnetically shielded room to reduce environmental magnetic noise. The pig is placed underneath the SQUID with the stomach centered under the channel array and baseline data was taken for 15 minutes.

The animal was removed from beneath the SQUID and a laparotomy was performed. The mesenteric blood supply was isolated for a section of intestine and ligated, inducing ischemia. The animal was once again placed under the SQUID in a similar position and recordings were taken for an additional 45 minutes.

All data segments were analyzed during breath holds to eliminate interference from the respiration artifact. The x, y, and z vector components were projected into specific directions using 1 minute segments. The directions of the projections were determined by maximizing the normalized frequency power of the intestinal ECA compared to all other sources and noise.

Results:
During baseline the average frequency of the intestinal ECA was found to be 10.6±0.45 cpm. The ECA decreased to 6.6±0.45 cpm after 45 minutes of induced ischemia.

Table 1: Comparison of Frequency Dominance of Projections vs. Single Vectors

<table>
<thead>
<tr>
<th></th>
<th>X Vector</th>
<th>Y Vector</th>
<th>Z Vector</th>
<th>Total Single Vectors</th>
<th>Vector Projection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Times Dominant</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td>Segments Used</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>144</td>
<td>48</td>
</tr>
<tr>
<td>Percentage</td>
<td>4.17%</td>
<td>20.83%</td>
<td>14.58%</td>
<td>13.19%</td>
<td>62.5%</td>
</tr>
</tbody>
</table>

The frequency of the ischemic small bowel ECA becomes dominate more often when Vector Projection is used. When individual vectors are examined the ischemic small bowel is rarely the dominate frequency found.

Conclusions:
The SQUID provides a noninvasive noncontact method for detecting ECA of the gut and changes in the frequency of the ECA caused by ischemia. Magnetic Vector Projection provides a better representation of the ECA from specific sources than any single vector component.