This is the back side of the front cover.
Table of Contents

Safety and Compliance Information ... vii

How to Use This Guide ... xvii

Chapter 1 System Overview

1.1 Voyager-DE™ STR Biospectrometry™ Workstation Overview ... 1-2
1.2 Voyager-DE™ STR Laser Safety ... 1-4
1.3 Voyager-DE STR Workstation Components ... 1-6
 1.3.1 Sample Loading Chamber ... 1-7
 1.3.2 Main Source Chamber .. 1-8
 1.3.3 Laser System .. 1-11
 1.3.4 Flight Tube (Drift Tube) ... 1-15
 1.3.5 Mirror Chamber ... 1-16
 1.3.6 Digitizer ... 1-19
 1.3.7 Computer and Video Systems ... 1-19
1.4 Voyager-DE STR Workstation Supporting Systems ... 1-20

Chapter 2 Voyager-DE STR Workstation Electronics Theory

2.1 Electronics Theory Overview ... 2-2
2.2 Electronics Common in Most Voyager-DE STR Instruments ... 2-4
 2.2.1 AC Distribution Board (V750053) .. 2-5
 2.2.2 DAC (Digital-to-Analog Converter) Board (V750025) 2-9
 2.2.3 DC Distribution Board (V750034) .. 2-11
 2.2.4 Low-Mass Gate Delay Timer Board (V750069, V750073) 2-15
 2.2.5 Low-Mass Gate Driver Boxes (V700635, V700643) and Detector Filter Bias (V750032) ... 2-20
 2.2.6 Timed Ion Selector (TIS) Assembly (V700471) .. 2-26
 2.2.7 TTL Output Opto-Trigger Board (V750065) .. 2-31
2.3 Electronics Only in Newer Model Instruments ... 2-33
 2.3.1 Beam-Steering Board (V750091) .. 2-33
 2.3.2 DE Switch Box V725115/V725125 ... 2-37
 2.3.3 Einzel Lens Electronics (Voltage Divider Box, 4317251) 2-44
 2.3.4 48-Bit I/O Board with Game Port (V750033) .. 2-45
 2.3.5 MALDI Control Board (V750082 and V750102-001, V750102-002, V7502-003) ... 2-47
Table of Contents

2.4 Electronics Only in Earlier Instruments ... 2-59
2.4.1 Flight-Tube (Drift-Tube) Power Supply (V750061) ... 2-60
2.4.2 Pulse Generator Board (V750063) ... 2-63

Chapter 3 Before Servicing the Workstation

3.1 Voyager Laser Safety .. 3-2
3.1.1 Overview of Laser Safety .. 3-2
3.1.2 Required Customer-Provided YAG Laser Safety Measures 3-3
3.2 Venting the Voyager DE-STR Workstation ... 3-4
3.2.1 Preparing to Vent ... 3-4
3.2.2 Venting to Air .. 3-5
3.2.3 Purging the System to N2 .. 3-5
3.3 Powering Up After Venting .. 3-6

Chapter 4 Diagnostics Software

4.1 Overview .. 4-2
4.2 Voyager Software Compatibility .. 4-2
4.3 Accessing the Diagnostics Software ... 4-3
4.4 Diagnostics Software Features ... 4-5
4.1.1 Control Pages .. 4-5
4.1.2 Status Bar ... 4-11

Chapter 5 Troubleshooting by Components

5.1 Troubleshooting Overview ... 5-2
5.2 Sample Loading Chamber ... 5-7
5.2.1 Vacuum System Interaction .. 5-7
5.2.2 Internal Interlocks Operation .. 5-9
5.2.3 Camera ... 5-11
5.2.4 Grabber, Linear Actuators, and Valves ... 5-11
5.2.5 Load/Eject Cycles ... 5-13
5.2.6 Vacuum Faults .. 5-15
5.2.7 Mechanical Control Page Errors and Warnings .. 5-16
5.3 Main Source Chamber ... 5-18
5.3.1 Source Clips ... 5-23
5.3.2 Source Pedestal ... 5-24
5.3.3 Stepper Motor Feedthroughs ... 5-26
5.3.4 Sample Plate and Grid Voltage ... 5-30
5.3.5 Internal High-Voltage Cable .. 5-30
5.3.6 Operation Mode ... 5-31
5.3.7 Delayed-Extraction Ion Source ... 5-32
Safety and Compliance Information

This section includes:
- Instrument safety
- Safety and EMC standards
- Laser safety

Instrument Safety

In This Section
This section includes:
- Notes, Hints, Cautions, and Warnings
- Safety symbols
- Before operating this instrument
- Material Safety Data Sheets (MSDSs)
- General Warnings

Notes, Hints, Cautions, and Warnings
Notes, Hints, Cautions, and Warnings are used in this document as follows.
A Note provides important information to the operator and appears as:

NOTE: If you are prompted to insert the boot diskette into the drive, insert it, and then press any key.

A Hint provides helpful suggestions not essential to the use of the system and appears as:

Hint: To avoid complicated file naming, use Save First to Pass or Save Best Only modes.

A Caution provides information to avoid damage to the system or loss of data and appears as:

CAUTION
Do not touch the lamp. This may damage the lamp.

A Warning provides specific information essential to the safety of the operator and appears as:

WARNING
CHEMICAL HAZARD. Wear appropriate personal protection and always observe safe laboratory practices when operating your system.
Safety and Compliance Information

Remarques, recommandations et avertissements
Une remarque fournit une information importante à l’opérateur et se présente ainsi:

REMARQUE: Si on vous demande d’insérer la disquette de démarrage dans le lecteur, insérez-la puis appuyez sur n’importe quelle touche.

Une recommandation fournit une information destinée à éviter des détériorations du système ou la perte de données:

RECOMMANDATION
La lampe peut être endommagée. N’y touchez pas.

Un avertissement fournit une information indispensable à la sécurité de l’opérateur et se présente ainsi:

AVERTISSEMENT
Conformez-vous toujours aux règlements du laboratoire quand vous utilisez votre système.

Safety Symbols
The following symbols may be displayed on the system. These symbols may also appear next to associated warnings in this document.

Electrical Symbols
The following chart is an illustrated glossary of electrical symbols that may be displayed on your instrument. Whenever such symbols appear on instruments, please observe appropriate safety procedures.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This symbol indicates the on position of the main power switch.</td>
</tr>
<tr>
<td></td>
<td>This symbol indicates the off position of the main power switch.</td>
</tr>
<tr>
<td></td>
<td>This symbol indicates the on/off position of a push-push main power switch.</td>
</tr>
<tr>
<td></td>
<td>This symbol indicates that a terminal may be connected to another instrument’s signal ground reference. This is not a protected ground terminal.</td>
</tr>
<tr>
<td></td>
<td>This symbol indicates that this is a protective grounding terminal that must be connected to earth ground before any other electrical connections are made to the instrument.</td>
</tr>
<tr>
<td></td>
<td>A terminal marked with this symbol either receives or delivers alternating current or voltage.</td>
</tr>
</tbody>
</table>
Non-electrical Symbols

The following is an illustrated glossary of non-electrical safety alert symbols that may be displayed on your instrument.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A terminal marked with this symbol can receive or supply an alternating and a direct current or voltage.</td>
</tr>
<tr>
<td></td>
<td>This symbol appears next to the values of the fuses required by the system.</td>
</tr>
<tr>
<td></td>
<td>WARNING: This symbol indicates the presence of high voltage and warns the user to proceed with caution.</td>
</tr>
<tr>
<td></td>
<td>WARNING: This symbol alerts you to consult the manual for further information and to proceed with caution.</td>
</tr>
</tbody>
</table>

Symboles des Alertes de Sécurité

Les symboles suivants peuvent être affichés sur le système. Dans ce document, ces symboles peuvent aussi apparaître à côté des avertissements auxquels ils s’associent.

Symboles Électriques

Le tableau suivant donne la signification de tous les symboles électriques qui figurent sur les appareils. En présence de l’un de ces symboles, il est impératif de se conformer aux consignes de sécurité appropriées.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Position MARCHE de l’interrupteur d’alimentation principal.</td>
</tr>
<tr>
<td></td>
<td>Position ARRÊT de l’interrupteur d’alimentation principal.</td>
</tr>
<tr>
<td></td>
<td>Positions MARCHE-ARRÊT de l’interrupteur d’alimentation principal à bouton poussoir.</td>
</tr>
<tr>
<td></td>
<td>Borne pouvant être reliée à la mise à la terre d’un autre appareil. Ce n’est pas une borne de mise à la terre protégée.</td>
</tr>
</tbody>
</table>
Safety and Compliance Information

Symboles Non Électriques
Le tableau suivant donne la signification des symboles d’alertes de sécurité non électriques qui figurent sur les appareils.

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Borne de mise à la terre de protection devant être reliée à la terre avant d’effectuer tout autre raccordement électrique à l’appareil.</td>
</tr>
<tr>
<td></td>
<td>Borne recevant ou fournissant une tension ou un courant de type alternatif.</td>
</tr>
<tr>
<td></td>
<td>Borne pouvant recevoir ou fournir une tension ou un courant de types alternatif et continu.</td>
</tr>
<tr>
<td></td>
<td>Ce symbole apparaît à côté des valeurs des fusibles requis par le système.</td>
</tr>
<tr>
<td></td>
<td>AVERTISSEMENT: Indique la présence d’une haute tension et avertit l’utilisateur de procéder avec précaution.</td>
</tr>
<tr>
<td></td>
<td>AVERTISSEMENT: Avertit l’utilisateur de la nécessité de consulter le manuel pour obtenir davantage d’informations et de procéder avec précaution.</td>
</tr>
<tr>
<td></td>
<td>AVERTISSEMENT: Danger associé à la présence d’un appareil de chauffage. Procéder avec précaution pour éviter de se brûler au contact de pièces ou d’éléments chauds.</td>
</tr>
<tr>
<td></td>
<td>Indique que l’appareil renferme un laser.</td>
</tr>
</tbody>
</table>

Before Operating This Instrument
Ensure that anyone involved with the operation of the instrument is instructed in both general safety practices for laboratories and specific safety practices for the instrument. Make sure you have read and understood all related Material Safety Data Sheets.

Material Safety Data Sheets (MSDSs)
Some of the chemicals that may be used with your system are listed as hazardous by their manufacturer. When hazards exist, they are prominently displayed on the labels of all chemicals. In addition, MSDSs supplied by the chemical manufacturer provide information about:

- Physical characteristics
- Safety precautions
- Health hazards
- First-aid
- Spill clean-up
- Disposal procedures
WARNING

CHEMICAL HAZARD. Familiarize yourself with the MSDSs before using reagents or solvents.

AVERTISSEMENT

RISQUE CHIMIQUE. Il convient de se familiariser avec la MSDS (feuille de données concernant la sécurité des matériaux) avant d’utiliser des réactifs ou des solvants.

General Warnings

WARNING

FIRE HAZARD. Using a fuse of the wrong type or rating can cause a fire. Replace fuses with those of the same type and rating.

AVERTISSEMENT

DANGER D’INCENDIE. L’usage d’un fusible de type ou de valeur nominale différents risque de provoquer un incendie. Il convient donc de remplacer les fusibles usagés par des fusibles du même type et de la même valeur nominale.

WARNING

LASER HAZARD. The laser emits ultraviolet radiation. Lasers can burn the retina and leave permanent blind spots. Do not remove instrument front or side panels or look directly into the laser beam or allow a reflection of the beam to enter your eyes. Wear proper eye protection if front or side panels are removed for service.

AVERTISSEMENT

DANGER LASER. Le laser émet des radiations ultraviolettes. Les lasers peuvent brûler la rétine et laisser des points aveugles permanents. Il convient de ne pas retirer le panneau avant ou les panneaux latéraux de l’appareil et de ne pas regarder directement dans le faisceau laser ou laisser une réflexion du faisceau entrer dans les yeux. Portez des protections adéquates pour les yeux si le panneau avant ou les panneaux latéraux ont été retirés afin d’effectuer l’entretien.
WARNING

ELECTRICAL SHOCK HAZARD. Severe electrical shock can result by operating the instrument without the front or side panels. Do not remove instrument front or side panels. High voltage contacts are exposed with front or side panels removed.

AVERTISSEMENT

RISQUE DE DÉCHARGE ÉLECTRIQUE. Des décharges électriques sérieuses peuvent résulter du fonctionnement de l’appareil lorsque le panneau avant et les panneaux latéraux sont retirés. Ne pas retirer le panneau avant ou les panneaux latéraux. Des contacts haute tension sont exposés lorsque les panneaux sont retirés.

WARNING

CHEMICAL HAZARD. To prevent eye injury, always wear eye protection when working with solvents.

AVERTISSEMENT

RISQUE CHIMIQUE. Pour éviter les blessures aux yeux, porter toujours des protections pour les yeux lorsque vous manipulez des solvants.

WARNING

PHYSICAL INJURY HAZARD. Use the Voyager-DE Biospectrometry Workstation only as specified in this document. Using this system in a manner not specified may result in injury or damage to the system.

AVERTISSEMENT

DANGER DE BLESSURES CORPORELLES. Veuillez suivre avec attention les indications figurant dans ce document lorsque vous utilisez la Station de Travail de Biospectrométrie Voyager. Un usage différent de la station pourrait causer un accident ou endommager le système.
Safety and Compliance Information

WARNING

CHEMICAL HAZARD. Before handling any chemicals, refer to the Material Safety Data Sheet provided by the manufacturer, and observe all relevant precautions.

AVERTISSEMENT

RISQUE CHIMIQUE. Avant de manipuler des produits chimiques, veuillez consulter la fiche de sécurité du matériel fournie par le fabricant, et observer les mesures de précaution qui s’imposent.

Safety and EMC (Electromagnetic Compliance) Standards

US Safety Standards Safety
This instrument has been tested to and complies with standard ANSI/UL 3101-1, "Electrical Equipment for Laboratory Use; Part 1: General Requirements", 1st Edition. It is an ETL Testing Laboratories listed product.

WARNING
Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Canadian Safety and EMC Standards

Safety
This instrument has been tested to and complies with standard CSA 1010, “Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use; Part 1: General Requirements”. It is an ETL Testing Laboratories listed product.

Sécurité
Cet instrument a été vérifié avec la norme CSA 1010, «Spécifications de sécurité du matériel électrique utilisé pour les mesures, les contrôles et dans les laboratoires : Partie 1 : Spécifications générales», et il est conforme à cette norme. C’est un produit homologué par les ETL Testing Laboratories.

EMC
This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.
Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.
Safety and Compliance Information

European Safety and EMC Standards

Safety
This instrument meets European requirements for safety (EMC Directive 73/23/EEC). This instrument has been tested to and complies with standard EN61010-1 “Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use”.

EMC
This instrument meets European requirements for emission and immunity (EMC Directive 98/336/EEC). This product has been evaluated to the EN55011:1992, Group 1, Class B “Radiated Emissions”, and EN50082-1:1992, “Generic Immunity”.

Laser Safety

Laser Classification
The Voyager-DE™ Biospectrometry™ Workstation uses a standard nitrogen laser and an optional Nd:YAG laser. Under normal operating conditions, the instrument laser is categorized as a Class I laser. Under certain conditions during servicing, when interlocks have been circumvented, the lasers fall into the following categories and can cause permanent eye damage:

- Nitrogen—Class IIIb
- Nd:YAG—Class IV

The Voyager-DE Biospectrometry Workstation complies with Title 21, U.S. Government DHEW/BRH Performance Standards, Chapter 1, Subchapter J, Section 1040, as applicable.

Laser Safety Features
The following safety features are included on the Voyager-DE Biospectrometry Workstation:

- Cabinet is designed to prevent access to collateral laser radiation exceeding the accessible emission limits in Performance Standards for Laser Products, 21 CFR 1040.10.
- Top, front, back, and side panels have interlock switches that disable the laser when panels are opened or removed.
- Safety labels for Class I standards are affixed to the unit.

Laser Safety Requirements
To ensure safe laser operation, note the following:

- The system must be installed and maintained by an Applied Biosystems Technical Representative.
- Top, front, back, and side panels must be installed during instrument operation. When front and side panels are installed, there should be no detectable radiation present. If front or side panels are removed when the laser is operational, you may be exposed to laser emissions in excess of Class 1 rating.
- Do not remove labels or disable safety interlocks.

Additional Safety Information
Refer to the user manual provided with the laser for additional information on government and industry safety regulations.
Required Customer-Provided YAG Laser Safety Measures

Before servicing a system using the YAG laser, the customer is required to provide safety precautions. The YAG accessory supplied with the Voyager-DE STR is a class I laser, which is considered not capable of producing damaging radiation levels during operation. When maintenance requires an Applied Biosystems field service engineer to defeat the interlocks protection system for the instrument, the YAG laser is classified as a class IV laser. A class IV laser poses hazards to the eye and skin not only from the direct beam but in some cases also from the diffuse reflection. These lasers can be considered a fire hazard and may also produce laser-generated air contaminants and hazardous plasma radiation.

Therefore before you can perform maintenance or service on the YAG Laser while at the customer facility, the customer must:

- Provide the appropriate Laser Warning Signs. These signs shall be conspicuously displayed in a location where they will best serve to warn any and all onlookers.

- Provide the appropriate safety glasses/goggles to their employees if they are in the area while the laser is being serviced. The safety glasses/goggles must be rated for a YAG laser with a wavelength of 355 nm.

- Provide and document laser safety training to their employees on the hazards associated with a YAG laser.

- Remove all employees from the area where maintenance to the YAG laser is being performed.

In addition, all customers must be in compliance with the ANSI standard Z136.1-1993, American National Standard for the Safe Use of Lasers.
How to Use This Guide

Purpose of This Guide
The Applied Biosystems Voyager-DE Biospectrometry Workstation Service Reference and Troubleshooting Guide provides the following:

- Reference information such as theory and circuit board functionality
- Troubleshooting procedures and tables
- Contact information

Audience
This guide is intended for novice and experienced Voyager workstation field service engineers, technical support, and technical trainers.

Structure of This Guide
The Applied Biosystems Voyager-DE Biospectrometry Workstation Service Reference and Troubleshooting Guide is divided into chapters and appendices. Each chapter page is marked with a tab and a header to help you locate information within the chapter.

The table below describes the material covered in each chapter and appendix.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1, System Overview</td>
<td>Describes the parts of the system and software.</td>
</tr>
<tr>
<td>Chapter 2, Voyager-DE STR Workstation</td>
<td>Describes the function, theory, and specifications for each Voyager workstation circuit board. Also includes tables of connectors, switches, and test points.</td>
</tr>
<tr>
<td>Electronics Theory</td>
<td></td>
</tr>
<tr>
<td>Chapter 3, Before Servicing the Workstation</td>
<td>Provides laser safety information, procedures for venting and powering up after venting.</td>
</tr>
<tr>
<td>Chapter 4, Voyager Diagnostics Software</td>
<td>Introduces the Voyager 32-Bit Diagnostic Software for Windows NT® platform.</td>
</tr>
<tr>
<td>Chapter 5, Troubleshooting by Components</td>
<td>Includes step-by-step procedures for troubleshooting and using the Diagnostics software for selected components.</td>
</tr>
<tr>
<td>Chapter 6, Troubleshooting by Symptoms</td>
<td>Provides symptoms, error codes, possible causes, and corrective actions.</td>
</tr>
<tr>
<td>Appendix A, Technical Support and Training</td>
<td>Describes how to contact Technical Support. Also includes how to obtain technical documents and customer training.</td>
</tr>
<tr>
<td>Appendix B, Assembly Drawings</td>
<td>Shows the locations of many components. Provides detailed drawings of some components.</td>
</tr>
<tr>
<td>Appendix C, Electronic Drawings</td>
<td>Electronic interconnect diagrams and circuit board drawings</td>
</tr>
<tr>
<td>Appendix D, Isolating Components Using Direct Bus Access</td>
<td>Describes how to write data directly to the bus through the Diagnostics Software Direct Bus Access control page.</td>
</tr>
</tbody>
</table>
Related Documentation
These related documents are shipped with each Voyager-DE STR system:

- **Voyager-DE™ Biospectrometry™ Workstation User Guide**—Refer to this guide for detailed procedures and reference information on using the Voyager-DE Biospectrometry Workstation.

- **Voyager-DE™ Biospectrometry™ Workstation Getting Started Guide**—Use this guide to learn the basics of operating the system. It provides step-by-step information for running your first experiment.

- **Data Explorer™ Software User Guide**—Use this guide to learn how to use the Data Explorer software to process and analyze data.

- **GPMAW General Protein/Mass Analyzer for Windows**—Use this booklet to learn how to use the GPMAW software.

- **Acqiris® Digitizers User Manual**—If the system includes an Acqiris digitizer, use this document to learn about this digitizer’s functions that are not described in this document or in the Voyager-DE Biospectrometry Workstation User Guide.

- **LeCroy®**—If the system includes a LeCroy digitizer, use this document to learn about functions that are not described in this document or in the Voyager-DE Biospectrometry Workstation User Guide.

- **Tektronix® TDS 520A, 524A, 540A, and 544A Digitizing Oscilloscope User Manual**—If your system includes an Tektronix oscilloscope, use this document to learn about functions not described in the Voyager-DE Biospectrometry Workstation User Guide.

- **Printer documentation (depends on the printer customer purchases)**—Use this documentation to set up and service the printer.

- **Microsoft® Windows NT® User Guide** and related documents—Use this guide to learn detailed information about the Microsoft Windows NT user interface.

Reference Documentation
These reference documents are shipped with each Voyager-DE STR system:

- Varian Turbopump Instruction Manual
- Varian Turbocontroller Instruction Manual
- Varian Multigauge Controller Manual
- Mechanical Pump Operating Instructions
- LSI Nitrogen Laser Manual
- Omega DIO-PC-48 Manual
- Power I Single Output SPL Series Data Sheet
- GAST Compressor Operating and Maintenance Instructions

The customer also receives the appropriate manual for the digitizer included with the system:

- **LeCroy™ Embedded Signal Analysis Products Operator’s Manual LSA1000 Series and LeCroy™ Embedded Signal Analysis Products Remote Control Manual LSA1000 Series**
- **GPIB Software Reference Manual + Tek Manuals**
Send Us Your Comments

The Technical Communication Department welcomes your suggestions for improving our manuals. You can send us your comments in two ways:

- Use the Technical Publications Customer Survey at:

 http://www.appliedbiosystems.com/contact.html

- Send e-mail to:

 techpubs@appliedbiosystems.com
1 System Overview

This chapter contains the following sections:

1.1 Voyager-DE™ STR Biospectrometry™
Workstation Overview .. 1-2

1.2 Voyager-DE™ STR Laser Safety 1-4

1.3 Voyager-DE STR Workstation Components 1-6
 1.3.1 Sample Loading Chamber 1-7
 1.3.2 Main Source Chamber 1-8
 1.3.3 Laser System 1-11
 1.3.4 Flight Tube (Drift Tube) 1-15
 1.3.5 Mirror Chamber 1-16
 1.3.6 Digitizer .. 1-19
 1.3.7 Computer and Video Systems 1-19

1.4 Voyager-DE STR Workstation Supporting
Systems ... 1-20
Chapter 1 System Overview

1.1 Voyager-DE™ STR Biospectrometry™ Workstation Overview

The Voyager-DE™ STR Biospectrometry™ Workstation (Figure 1-1) is a floor-standing MALDI-TOF mass spectrometer that includes a reflector analyzer.

![Diagram of Voyager-DE STR Biospectrometry Workstation](image)

Figure 1-1 Voyager-DE STR Biospectrometry Workstation

Workstation Components

Major components of the Voyager-DE STR Biospectrometry Workstation include a:

- **Mass spectrometer**—A time-of-flight mass spectrometer, described in Section 1.3, Voyager-DE STR Workstation Components. See the Voyager User Guide for more information. The Voyager workstation uses a 337-nm wavelength nitrogen laser.
- **Computer/Data system**—A computer that operates the Voyager workstation control software and the Voyager processing software. You control the mass spectrometer using the computer.
- **Digitizer**—An analog-to-digital converter that allows the signals from the mass spectrometer to be transferred to the computer.
- **Video monitor**—A monitor that displays a real-time video image of the sample spot on the sample plate in the mass spectrometer.
- **Control stick**—A peripheral device that allows you to control the position of the sample plate in the mass spectrometer and to start and stop acquisition. The control stick allows you to:
 - Align a sample plate in the path of the laser
 - Start and stop acquisition
 - Save data
Accessories and Options

Customers can purchase the following Voyager workstation options from Applied Biosystems:

- **CID**—Collision-induced dissociation capability to enhance fragmentation in Post-Source Decay (PSD) analysis. For more information, see the *Voyager User Guide*, Enhancing Fragmentation with CID. The hardware needed for the CID option is factory-installed. However, the workstations are plumbed for CID only when the customer orders this option.

- **Nd:YAG**—An integrated external 355-nm wavelength neodymium yttrium aluminum-garnet laser. The Nd:YAG Laser Option is compatible with any Voyager-DE STR workstation with a serial number of 4154 or later.

- **GPMAW (General Protein Mass Analysis for Windows®)**—A factory-installed software package useful for protein-specific applications, theoretical digest, and post source decay (PSD) fragmentation.

- **CD-ROM Reader/Recorder**—A device for storing or backing up data on CD-ROM media.

- **Test standards kits**—Useful for Voyager workstation optimization and applications. Kits available include:
 - Sequazyme™ Peptide Mass Standards Kit
 - Sequazyme™ C-Peptide Sequencing Kit
 - Sequazyme™ Oligonucleotide Sequencing Kit
1.2 Voyager-DE™ STR Laser Safety

Laser Classification

The Voyager-DE™ Biospectrometry™ Workstation uses a standard nitrogen laser and an optional Nd:YAG laser. Under normal operating conditions, the instrument laser is categorized as a Class I laser. Under certain conditions during servicing, when interlocks have been circumvented, the lasers fall into the following categories and can cause permanent eye damage:

- Nitrogen—Class IIIb
- Nd:YAG—Class IV

The Voyager-DE Biospectrometry Workstation complies with Title 21, U.S. Government DHEW/BRH Performance Standards, Chapter 1, Subchapter J, Section 1040, as applicable.

Laser Safety Features

The following safety features are included on the Voyager-DE Biospectrometry Workstation:

- Cabinet is designed to prevent access to collateral laser radiation exceeding the accessible emission limits in Performance Standards for Laser Products, 21 CFR 1040.10.
- Top, front, back, and side panels have interlock switches that disable the laser when panels are opened or removed.
- Safety labels for Class I standards are affixed to the unit.

WARNING

ELECTRICAL SHOCK AND LASER HAZARD. In External Trigger mode, the nitrogen laser energy storage capacitors are charged, and the laser is ready to fire at any time. When you perform service on the laser in External Trigger mode, remove jewelry and other items that can reflect the beam into your eyes or the eyes of others. Wear laser safety goggles and protect others from exposure to the beam. Post a laser warning sign.

WARNING

ELECTRICAL SHOCK AND LASER HAZARD. When instrument covers are removed, high voltage contacts are exposed, and the laser emits ultraviolet radiation. Wear laser safety goggles and post a laser warning sign at the entrance to the laboratory when you remove covers for service.

WARNING

LASER HAZARD. Exposure to direct or reflected laser light can burn the retina and leave permanent blind spots. Never look directly into the laser beam. Remove jewelry and other items that can reflect the beam into your eyes. Wear laser safety goggles during laser alignment. Protect others from exposure to the beam. Post a laser warning sign while performing service.
Laser Safety Requirements

To ensure safe laser operation, note the following:

- The system must be installed and maintained by an Applied Biosystems Technical Representative.
- Top, front, back, and side panels must be installed during instrument operation. When front and side panels are installed, there should be no detectable radiation present. If front or side panels are removed when the laser is operational, you may be exposed to laser emissions in excess of Class 1 rating.
- Do not remove labels or disable safety interlocks.

Additional Safety Information

Refer to the user manual provided with the laser for additional information on government and industry safety regulations.

Required Customer-Provided YAG Laser Safety Measures

Before servicing a system using the YAG laser, the customer is required to provide safety precautions. The YAG accessory supplied with the Voyager-DE STR is a class I laser, which is considered not capable of producing damaging radiation levels during operation. When maintenance requires an Applied Biosystems field service engineer to defeat the interlocks protection system for the instrument, the YAG laser is classified as a class IV laser. A class IV laser poses hazards to the eye and skin not only from the direct beam but in some cases also from the diffuse reflection. These lasers can be considered a fire hazard and may also produce laser-generated air contaminants and hazardous plasma radiation.

Therefore before you can perform maintenance or service on the YAG Laser while at the customer facility, the customer must:

- Provide the appropriate Laser Warning Signs. These signs shall be conspicuously displayed in a location where they will best serve to warn any and all onlookers.
- Provide the appropriate safety glasses/goggles to their employees if they are in the area while the laser is being serviced. The safety glasses/goggles must be rated for a YAG laser with a wavelength of 355 nm.
- Provide and document laser safety training to their employees on the hazards associated with a YAG laser.
- Remove all employees from the area where maintenance to the YAG laser is being performed.

In addition, all customers must be in compliance with the ANSI standard Z136.1-1993, American National Standard for the Safe Use of Lasers.
1.3 Voyager-DE STR Workstation Components

Components Overview

The components of the Voyager-DE STR Biospectrometry workstation (shown in Figure 1-2 and described in the sections that follow) are the:

- Sample loading chamber
- Main source chamber
- Laser system
- Flight tube
- Mirror chamber
- Digitizer
- Computer system, video system, and Voyager software

![Figure 1-2 Voyager-DE STR Workstation](image-url)
1.3.1 Sample Loading Chamber

Overview
The sample loading chamber (Figure 1-3) transports the sample plate between vacuum chambers at various pressures.

![Diagram of sample loading chamber components]

Figure 1-3 Voyager-DE STR Workstation Sample Loading Chamber

The sample loading chamber system consists of:

- **Linear actuators**—Two pneumatic actuators that control the load/eject movement of the sample plate.

 Linear 1 actuator, with a magnetic grabber, transports the sample plate between the sample loading chamber and the main source chamber. It places the sample plate on and removes the sample plate from the sample stage.

 Linear 2 actuator, with its sample transporter, transports the sample plate into and out of the sample loading chamber.

- **Flap door actuators**—Two pneumatic actuators that control the opening of the flap doors that maintain vacuum pressure.

 Flap Door 1 separates the sample loading chamber and the main source chamber. Flap Door 1 is spring-loaded. The spring maintains positive pressure in the closed (extended) position, maintaining integrity of the seal when the compressor is off.

 Flap Door 2 separates the external atmosphere and the sample loading chamber.

Pneumatic System
An on-board air compressor provides up to 60 PSI (4.13 bar) to the pneumatic system that controls the sample-handling actuators and flap-door valves. For the actuators to operate correctly, a minimum of 15 PSI (1.03 bar) is needed. The integrated compressor is activated only during plate ejection and loading.
1.3.2 Main Source Chamber

The main source chamber houses the ion source, a high-voltage region for ionizing, desorbing, and accelerating ions. Figure 1-4 shows the main source chamber for systems with serial numbers 4154 and later.

![Figure 1-4 Voyager-DE STR Workstation Main Source Chamber (Top View)]

Figure 1-5 shows typical voltages applied for main source chamber components of Voyager-DE STR instruments with serial numbers of 4154 and later.

![Figure 1-5 Typical Voltages of Source Chamber Components]

For more information, see the following sections in the Voyager User Guide:

- Optimizing Acquisition Settings
- Setting Accelerating Voltage, and Optimizing Grid Voltage%
For Voyager-DE STR instruments with a serial number of 4154 and later, the main source chamber includes a:

- **Sample plate and sample stage**—The source of ions. The sample plate and sample stage (Figure 1-3 on page 1-7) are supplied with voltage (source, up to 25,000 V) for acceleration of ions into the flight tube.

- **Variable-voltage grid**—A grid supplied with voltage to fine-tune ion acceleration. Typical voltage settings are shown in the following table:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Typical Variable-Voltage Grid Settings (Percent of Source Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear, Delayed-Extraction mode</td>
<td>~94 to 95%</td>
</tr>
<tr>
<td>Reflector mode</td>
<td>~65 to 75% (higher with PSD)</td>
</tr>
</tbody>
</table>

When theDelayed-Extraction switch is open in Delayed-Extraction mode, the source plate and variable-voltage grid have approximately the same voltage. When the Delayed-Extraction switch is closed, the sample source plate has higher voltage than the variable-voltage grid. This causes ions of the same polarity to accelerate out of the main source chamber.

- **Ground grid**—The ground surface for formation of the potential gradient to the variable-voltage grid. Charged ions stop accelerating at the ground grid, but retain their initial velocity. After the ground grid, the ions enter the field-free region of the analyzer.

- **Collision cell**—A chamber available as the collision-induced dissociation (CID) option for enhanced fragmentation in PSD analysis.

- **Einzel lens**—A three-element (Figure 1-6), cylindrical, electrostatic lens (Figure 1-7) designed to organize the stream of ions into a narrow, straight beam. Electrostatic lenses focus charged particles in the same way as optical lenses focus light.

\[
\begin{align*}
V_3 & = V_1 \\
V_2 & > V_1
\end{align*}
\]

Figure 1-6 Potentials Configuration of an Einzel Lens (Cross Section)
The potentials of the first and third elements are the same. As the ion stream passes through the einzel lens, the ions are repelled toward the center of the cylinder, forming a collimated beam at a focal distance farther down the flight path. The focal length depends on the dimensions of and the potentials applied to the lens elements.

- Beam-steering plates—Two pairs of parallel plates that maintain the correct path (horizontal and vertical) for the beam to strike the detector. You tune the beam voltage to optimize ion focusing.

Figure 1-7 Einzel Lens Assembly Expanded View
1.3.3 Laser System

Laser System Overview

The standard laser is a 337.1 nm-beam nitrogen laser. It produces 3-ns-wide pulses at up to 20 pulses per second. For Voyager workstation with serial numbers 4154 and later, an optional 355 nm wavelength Nd:YAG laser unit can be purchased.

When all the Voyager workstation covers (top, front, side, back, and rear covers) are installed, no detectable radiation is present, and the nitrogen laser is classified as a Class 1 laser. Similarly, if all Voyager workstation covers and the YAG laser unit covers are installed, the YAG laser unit is classified as a Class 1 laser.

The Voyager workstation covers have interlock switches that disable the laser when the covers are removed.

When maintenance requires a field service engineer to defeat the interlock protection system, the radiation may be present in excess of Class 1 limits. Under certain conditions during servicing, when interlocks have been circumvented, the lasers can cause permanent eye damage and therefore are classified in the following categories:

- **Nitrogen laser**—Class IIIb
- **Nd:YAG laser**—Class IV

A class IV laser poses hazards to the eye and skin not only from the direct beam but, in some cases, also from diffuse reflection. These lasers can be considered fire hazards, which also may produce laser-generated air contaminants and hazardous plasma radiation. See the Safety and Compliance Information section in the front of this manual for safety precautions to be taken by the customer before performing service on the YAG Laser.

For more safety information, see the Safety and Compliance Information section in the front of this manual and the documentation provided by the laser manufacturer.

WARNING

ELECTRICAL SHOCK AND LASER HAZARD. When instrument covers are removed, high voltage contacts are exposed, and the laser emits ultraviolet radiation. Wear laser safety goggles and post a laser warning sign at the entrance to the laboratory when you remove covers for service.

WARNING

LASER HAZARD. Exposure to direct or reflected laser light can burn the retina and leave permanent blind spots. Never look directly into the laser beam. Remove jewelry and other items that can reflect the beam into your eyes. Wear laser safety goggles during laser alignment. Protect others from exposure to the beam. Post a laser warning sign while performing the alignment.
Nitrogen Laser Structure

Components of the nitrogen laser module include the:

- Shutter (manual slide mechanism)
- Plasma cartridge module
- Low-voltage power supplies
- High-voltage power supplies
- Trigger transformer board

All controls for the laser unit are on the rear panel of the laser unit (Figure 1-8).

Figure 1-8 Nitrogen Laser Control Panel

The components of the nitrogen laser control panel and their functions are as follows:

- **Interlocks Defeated LED**—When lit (green), indicates that the laser is ready to fire. When dim, the cover or remote interlock is open, and the laser will not fire.

- **Laser On (Radiation Emission) LED**—When lit (red), indicates that the laser is powered on and may emit radiation.

- **Key Control On/Off Switch**—Turns on or off the electrical power to the laser. You can remove the key only in the “Off” position. The Laser On LED indicates the state.

- **Power Receptacle**—Receives a grounded standard three-wire power plug for 110 (±20 V) 3 A operation. The power cord must not be longer than 6 feet (1.8 m). The power cord is factory-installed.

- **Remote Interlock Connector**—Connects a cable to a remote location from which you can interrupt operation of the laser.
• **Internal/External Trigger Adjustment**—Provides control of internal manual and external trigger pulse-repetition rate.

Internal Trigger mode allows you to manually vary the pulse-repetition rate continuously from 0 to 20 pulses per second. To increase the pulse repetition rate, you turn the knob clockwise. Use Internal Trigger mode for diagnostic purposes only.

External Trigger mode is the standard mode for Voyager workstation operation. In this mode, external electrical signals are sent through the BNC trigger input connector to set the pulse-repetition rate up. To set External Trigger mode, turn the knob fully counterclockwise until you feel a switch action.

WARNING

ELECTRICAL SHOCK AND LASER HAZARD. In External Trigger mode, the nitrogen laser energy storage capacitors are charged, and the laser is ready to fire at any time. When you perform service on the laser in External Trigger mode, remove jewelry and other items that can reflect the beam into your eyes or the eyes of others. Wear laser safety goggles and protect others from exposure to the beam. Post a laser warning sign.

• **BNC Connector (Trigger Input)**—The external trigger requires a TTL signal of 1 microsecond or longer. The input of the trigger is protected with an opto-isolator that minimizes EMI/RF interferences. The cable is an RG58C/U BNC cable, 4 feet (1.2 m) or shorter.

• **Fan**—Moderates the temperature of the nitrogen laser unit.

WARNING

LASER BURN HAZARD. An overheated laser can cause severe burns if it contacts skin. **DO NOT** operate the laser when it cannot be cooled by its cooling fan. Always wear laser safety goggles.
Figure 1-9 Nitrogen Laser Beam Path

When the laser is triggered, the emitted laser beam strikes the beam splitter lens. A small part of the beam is reflected to the optical trigger board, providing timing signals for the following components:

- Digitizer
- Delayed-Extraction pulse delay
- Timed Ion Selector pulse delay
- Low-Mass Gate

The remaining part of the laser beam passes through the beam splitter lens to a laser attenuator. The laser attenuator is a 0 to 3 OD (optical density) gradient optical disk that decreases or increases the intensity of the laser beam. As the laser is firing, you adjust the attenuation by pressing the Control+Page Up and Control+Page Down keys on the computer keyboard. The Control window must be active.

The attenuated beam passes through a prism, which directs the laser beam through a focusing ring (a lens assembly) and into the ion source.

The output beam exiting the nitrogen laser unit is approximately 250 µJ. Depending on the attenuation setting, approximately 2 to 8 µJ enters the main source chamber and is allowed to strike the sample.
1.3.4 Flight Tube (Drift Tube)

Overview

The flight tube is free of electromagnetic fields (no accelerating forces are present), allowing ions to drift at a velocity inversely proportional to the square root of their masses. (That is, the lighter an ion, the faster it drifts; the heavier an ion, the slower it drifts.) The flight tube is also referred to as the drift tube.

At the entrance to the flight tube of an instrument with a serial number of 4154 and later, there are an einzel lens (Figure 1-10) and four beam-steering plates. Voltage applied to the einzel lens and beam-steering plates focuses the beam and directs the ions to the detector.

![Figure 1-10 Ion Exit Flange Showing the Einzel Lens Assembly](image)

Timed Ion Selector (TIS) for PSD and CID Applications

The flight tube contains a Timed Ion Selector (TIS). The TIS is a Bradbury-Nielson gate, a device that allows ions only of a selected mass range and associated fragments to pass through to the detector. The TIS deflects other ions.

When the TIS is turned on, voltage (±950 V) is applied to the selector to deflect unwanted ions. At the time that corresponds to the ions of interest, voltage is turned off, and the ions of interest pass to the detector (Figure 1-11 on page 1-16). After the ions pass through the selector, voltage is turned on again, to deflect ions of non-interest.

The TIS is used during post source decay (PSD) applications to selectively allow the precursor ion and associated fragments to reach the mirror chamber. The TIS deflects other ions. This feature allows one molecule (species) to be analyzed without interference from others present in the original sample.
Chapter 1 System Overview

Figure 1-11 Diagram of TIS Function

The TIS is controlled by the same type of high frequency counter as the delayed extraction (DE) function. Switches and jumpers on the Pulse Generator board determine the mode of operation (DE or TIS). For information, see Section 2.4.2, Pulse Generator Board (V750063).

1.3.5 Mirror Chamber

Overview

The Voyager-DE STR workstation offers two flight-path modes of operation, Linear and Reflector. The mirror chamber houses the linear detector, reflector, and reflector detector. The detectors measure ion abundance over time and send an analog signal to the digitizer for conversion to mass spectra (see Section 1.3.6, Digitizer). The detector may consist of a single multichannel plate or dual multichannel plates.

Low-Mass Gate Function

The low-mass gate function screens out low-mass ions. Low-mass ions from the matrix are not of interest, yet they can be produced in quantities large enough to overload the detector. The Low-Mass Gate delays application of full high voltage to the detector microchannel plate until after the matrix ions pass. The microchannel plates have an inherent gain recovery time, and the delay of full high voltage preserves the gain until a region of interest. When the full high voltage to the detector is delayed, ions strike the detector but generate only a weak signal.

Linear Mode

In Linear mode, the ion beam travels approximately 2 meters down the flight tube directly to the linear detector. The shorter flight path allows greater sensitivity. This flight path is appropriate for analyzing high mass (greater than 5 to 15 kDa) and other samples, such as DNA.
The linear detector:

- Measures ion abundance over time.
- Is used in Linear mode only; it is not used in Reflector or PSD mode.
- Is the most sensitive mode. Fragments, neutral molecules, and molecular ions arrive at the detector at the same time and less sample fragmentation is observed.
- Is a hybrid high-current detector (HCD). The HCD (Figure 1-12) consists of a single microchannel plate, a fast scintillator, and a photomultiplier. Earlier instruments (serial numbers 4115, 4114, 4111 and earlier) can be upgraded with HCD.

Reflector Mode

In Reflector mode, the ion beam travels approximately 2 meters down the flight tube to the reflector mirror where the beam is reflected an additional meter to the reflector detector. Reflector mode offers higher resolution and greater mass accuracy because of the longer flight path and action of the reflector. Reflector mode is commonly used for analyzing lower mass ions and in PSD analysis.

The reflector is a single-stage, gridded mirror that focuses energy and reverses the direction of the ions. Ion reflection:

- Filters out neutral molecules
- Corrects time dispersion due to initial kinetic energy distribution
- Provides greater mass accuracy and resolution

The reflector (Figure 1-13 on page 1-18) is a series of parallel, equally-spaced disks with coaxial holes, separated by insulators. Figure 1-14 on page 1-18 shows the time-focusing of ions of identical mass (and energy) within the mirror. Time-focusing results in improved resolution.
The disk potentials are determined by the reflector voltage and series resistor network, such that their potentials gradually increase as the ions penetrate farther into the mirror. The final disk has a potential that is slightly higher than the source (accelerating) voltage, so that all charged ions are forced to reverse direction before they reach the back of the mirror. Neutral molecules are not deflected.

The Voyager-DE STR workstation reflector is tilted down one degree off axis. The slight tilt allows the reflector detector to be placed off-axis to avoid blocking incoming ions and minimize incidental collisions. This configuration also ensures that the paths of incoming and reflected ions do not overlap.

The reflector detector:

- Measures the abundance of reflected ions over time
- Is a dual microchannel plate optimized for response time
- Has a grounded shield to protect the ions from stray electromagnetic fields
- Is positioned perpendicular to the ion beam for improved performance
1.3.6 Digitizer

The digitizer converts the analog signal from a detector to a digital signal that can be transmitted to the computer. Currently, Voyager-DE STR requires a 2 GHz digitizer (minimum) for optimal performance. Supported digitizers are listed below:

- **LeCroy™ (2 GHz)**—Provides real-time display of spectra. Requires a dedicated Ethernet board and Voyager 5.0 or later software.
- **Tektronix™ (2 GHz and 4 GHz)**—Requires a GPIB Card and IEEE cable. Works with Voyager 4.51 software and Voyager 5.0 and later software.
- **Acqiris (2 GHz)**—Provides real-time display of spectra. Requires Voyager 5.1 or later software. Installs in the computer PCI slot.

See the *Voyager User Guide* for information on connecting the digitizer.

1.3.7 Computer and Video Systems

Computer System

The Voyager-DE STR Biospectrometry Workstation (serial numbers 4154 and later) includes the following IBM®-compatible computer hardware components:

- Minimum computer configuration of Pentium III® 500 MHz CPU, with a 6.4 GB hard disk and 128 MB random access memory (RAM)
- 3.5-inch HD (high density), 1.44 MB floppy disk drive
- CD-ROM drive, integrated sound card
- Integrated 10/100 MB 3COM® Ethernet adapter card on the motherboard
- VGA compatible color monitor
- WIN95 Spacesaver Quiet Key, 104-key keyboard
- Microsoft-compatible mouse
- Control stick
- Optional laser printer

NOTE: The manufacturer-installed integrated sound card is disabled before the Voyager workstation is shipped. The sound card can interfere with the loading of drivers and the functioning of the Voyager stepper motors. Also, screen savers may interfere with Voyager system performance.
Chapter 1 System Overview

Computer monitor
To produce the spectral trace displayed on the computer monitor, m/z values are plotted against intensity (Figure 1-15). The Voyager software calculates m/z from the measured drift time. Intensity is calculated from the number of ions reaching the detector at a given time. Intensity is referred to as ion intensity (abundance) or signal intensity.

![Figure 1-15 Time-of-Flight Analysis](image)

Video System
The Voyager-DE STR video monitor displays a black and white real-time sample image (100 times magnification) of the sample spot in the sample chamber as viewed through the video camera. The camera turns on when the vacuum system is started.

1.4 Voyager-DE STR
Workstation Supporting Systems

Electronics
Electronics (including circuit boards and power supplies) are described in Chapter 2, Voyager-DE STR Workstation Electronics Theory.

Power Supplies
The Voyager-DE STR workstation operates with two power supply systems: low voltage and high voltage. For more information, see Chapter 2, Voyager-DE STR Workstation Electronics Theory.

Vacuum System
The vacuum system uses multiple pumps and valves to create and maintain a sealed vacuum environment. See Section 6.1.5, Vacuum System, for more information.

Voyager Software
The Voyager-DE STR software is bidirectional and communicates with the hardware and software. Through the control stick and mouse, the Voyager control software allows you to:

- Align a sample plate in the path of the laser
- Start and stop acquisition
- Save and transfer data to the processing software

Voyager software and computer systems have evolved from using Microsoft® Windows® 3.11 to Microsoft Windows NT® 4.0 platforms (32-bit structure).
For newer Voyager-DE STR workstations, the Dell computer is shipped from the factory with:

- Microsoft Windows NT 4.0
- Voyager software (includes Voyager version 5.0 and later Instrument Control Panel and Sequence Control Panel, and Data Explorer™ version 3.4 and later software)
- Microsoft Office 2000 (Small Office Suite)
- NT Service Pack 5
- Internet Explorer

Software Features

Voyager version 5.0 and later software includes:

- **Voyager Instrument Control Panel**—Controls the mass spectrometer for calibration and data acquisition.

- **Voyager Sequence Control Panel**—Works with the Instrument Control Panel and Data Explorer. Allows you to acquire and process data automatically. You can acquire multiple samples using the same or different instrument settings (.BIC) files.

- **Data Explorer Software**—Allows post-processing analysis of mass spectral data. Replaces the GRAMS software.

- **Instrument Hardware Controller (IHC)**—For instruments running Voyager software versions 5.0 and later, runs in the background to record errors in the NT event log. Interfaces with instrument control and data acquisition software.

 In manual mode, you start the computer then manually launch the IHC from the Windows NT control panel. In automatic mode, the IHC launches when you start the computer.

- **Voyager Diagnostics Software**—Provides diagnostic system status and manual operation of Voyager-DE STR hardware. Allows you to troubleshoot or isolate electrical, mechanical, and vacuum problems or to test the system after repairing or replacing parts. See Chapter 4, Voyager Diagnostics Software for an overview of the diagnostics software. Using each control page during troubleshooting is detailed in various sections in Chapter 5, Troubleshooting by Components, and in Appendix D, Isolating Components Using Direct Bus Access.

The Voyager Diagnostics software for NT platform enables you to control the hardware components when the Instrument Hardware Controller (IHC) and Instrument Control Panel (ICP) are shut down. You can run the diagnostics software whether the instrument is operating under vacuum or at atmosphere (ATM).
2 Voyager-DE STR
Workstation Electronics Theory

This chapter contains the following sections:

2.1 Electronics Theory Overview .. 2-2
2.2 Electronics Common in Most Voyager-DE
 STR Instruments.. 2-4
 2.2.1 AC Distribution Board (V750053) 2-5
 2.2.2 DAC (Digital-to-Analog
 Converter) Board (V750025) 2-9
 2.2.3 DC Distribution Board (V750034) 2-11
 2.2.4 Low-Mass Gate Delay Timer Board
 (V750069, V750073) 2-15
 2.2.5 Low-Mass Gate Driver Boxes (V700635,
 V700643) and Detector Filter Bias
 (V750032) .. 2-20
 2.2.6 Timed Ion Selector (TIS) Assembly
 (V700471) .. 2-26
 2.2.7 TTL Output Opto-Trigger Board (V750065) 2-31
2.3 Electronics Only in Newer Model Instruments 2-33
 2.3.1 Beam-Steering Board (V750091) 2-33
 2.3.2 DE Switch Box V725115/V725125 2-37
 2.3.3 Einzel Lens Electronics
 (Voltage Divider Box, 4317251) 2-44
 2.3.4 48-Bit I/O Board with Game Port
 (V750033) .. 2-45
 2.3.5 MALDI Control Board (V750082 and
 V750102-001, V750102-002,
 V7502-003) ... 2-47
2.4 Electronics Only in Earlier Instruments 2-59
 2.4.1 Flight-Tube (Drift-Tube)
 Power Supply (V750061) 2-60
 2.4.2 Pulse Generator Board (V750063) 2-63
2.1 Electronics Theory Overview

Electronics

Most of the electronics for the Voyager-DE STR are in the two cabinets below the mass spectrometer components (Figure 2-1 and Figure 2-2).

![Figure 2-1 Electronics in Left Cabinet](image1)

![Figure 2-2 Electronics in Right Cabinet Bottom Drawer](image2)
Two circuit boards, the 48-bit I/O board and stepper motor board, are within the computer (Figure 2-3). The computer is housed on the top drawer of the right cabinet.

![Circuit Boards in the Computer (Right Cabinet, Top Drawer, Rear View)](image)

Figure 2-3 Circuit Boards in the Computer (Right Cabinet, Top Drawer, Rear View)

Circuit Board Descriptions

The circuit board descriptions in this chapter detail the:

- Logic
- Specifications
- Connections, Switches, and Test points

Interconnect Diagram

An overall cable connection diagram that shows how the electronics interact with each other is available in Appendix C, Electronic Drawings.

Additional Electronics Information

Additional information is available on the MALDI Product Support web site of the Applied Biosystems intranet. The MALDI Product Support web site path is:
https://gene.peintranet.net/ (login to the intranet is needed), Departments, Product Support, Voyager Support.

The table below provides paths to electronic schematics, bulletins, and recently-encountered problems.

<table>
<thead>
<tr>
<th>Information</th>
<th>Path from Voyager Support Web Site Home Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit board schematics</td>
<td>Service Documentation, Service Training Schematics</td>
</tr>
<tr>
<td>Service bulletins</td>
<td>Alerts-Bulletins-Notes, Voyager Electronics</td>
</tr>
<tr>
<td>Electronics problems recently-encountered by field</td>
<td>Link to the MALDI Knowledge database*. At the MALDI Knowledge database, select Electronics</td>
</tr>
<tr>
<td>service engineers</td>
<td></td>
</tr>
</tbody>
</table>
Most Voyager-DE STR instruments have the following electronics:

- AC Distribution V750053
- DAC Board V750025
- DC Distribution Board V750034
- Low-Mass Gate: positive, negative, and detector filter bias
- Timed Ion Selector (TIS) Assembly V700471
- TTL Output Opto-Trigger PCA V750065

Figure 2-4 shows the housing of these electronics.

![Figure 2-4 Housing of Electronics Common in Most Instruments](image-url)
2.2.1 AC Distribution Board (V750053)

Overview

The AC Distribution board (Figure 2-5):
- Selects the proper auto-transformer tap
- Fuses both sides of the power line
- Provides a “Fuse OK” LED for each output
- Gates the compressor AC power with the autosampler “Load” position

Figure 2-5 AC Distribution Board

Theory

Terminal Block, J16

This terminal block connects the auto-transformer to the PCA and allows you to connect the auto-transformer taps to select the proper line voltage. Accommodated line voltages are:
- 100 V
- 120 V
- 220 V
- 240 V

Fusing, F1A,B Through F15A,B

Both sides of the power line (neutral and hot) are fused.

LEDs

For every output connector, an LED is provided to indicate that the fuses are intact. The LED is unlit when one or both fuses are blown.
Chapter 2 Electronics

Compressor Relay and Diodes

J15, the output connector for the compressor, is gated through a relay. This relay allows only J15 power when the autosampler is in the Load Position (both the x-load and y-load microswitches are closed). The diodes are necessary so the “ground” that is present in the Load Position is seen by both the compressor relay and control board logic.

Output Connectors

All fifteen output connectors (except J15, the compressor power) are identically powered.

Label

A label on the board provides the current revision of the board, fuse values, and the destination of each output connector.
Figure 2-6 AC Distribution Board Block Diagram
Connectors and LEDs

Table 2-1 Connectors and LEDs on the AC Distribution Board

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectors</td>
<td>J1–J14</td>
<td>Output connectors</td>
<td>3-position MATE-N-LOK</td>
</tr>
<tr>
<td></td>
<td>J15</td>
<td>Compressor power</td>
<td>3-position MATE-N-LOK</td>
</tr>
<tr>
<td></td>
<td>J16</td>
<td>Terminal block</td>
<td>2 × 8 terminal block</td>
</tr>
<tr>
<td></td>
<td>J17</td>
<td>“Load Position” in, out</td>
<td>4-position Mini-Fit™</td>
</tr>
<tr>
<td>LEDs</td>
<td>DS1–DS15</td>
<td>Fuse “OK” LEDs</td>
<td>LED</td>
</tr>
</tbody>
</table>
2.2.2 DAC (Digital-to-Analog Converter) Board (V750025)

Overview
This DAC circuit board converts a digital code from the computer to an analog output voltage. Each DAC (Digital-to-Analog Converter) board has a unique address that is set by its DIP switches.

Theory
Address
The computer address is compared to the board address by U3. If the address is correct, the Chip Select (CS*) on the DAC chip is asserted, and the chip is selected.

Data
Data is loaded on the bus sometime after the address is loaded. The 16-bit data is buffered through U2 and U5 and passed to the DAC chip.

Load and Latch
The computer sends a Load Data (LD*) and a Latch pulse that are buffered through U6B. When the load and latch are asserted, the DAC loads the data from the bus.

Figure 2-7 DAC Board Locations
Chapter 2 Electronics

DAC

The DAC uses a 5 V reference generated by the U4 regulator. Voltage out is 0 to 10 V analog.

Connectors

Table 2-2 describes the connectors.

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectors</td>
<td>J1</td>
<td>Bus connection</td>
<td>34-pin ribbon</td>
</tr>
<tr>
<td></td>
<td>J2</td>
<td>DAC Vout</td>
<td>4-pin MTA</td>
</tr>
<tr>
<td></td>
<td>J3</td>
<td>Power +5 V, +15 V, −15 V</td>
<td>5-pin MTA</td>
</tr>
<tr>
<td></td>
<td>J4</td>
<td>Power +5 V, +15 V, −15 V</td>
<td>6-pin Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J5</td>
<td>DAC Vout</td>
<td>2-pin Mini-Fit</td>
</tr>
</tbody>
</table>
2.2.3 DC Distribution Board (V750034)

Overview
The DC Distribution board distributes the following DC voltages from the power supplies to individual circuit boards: +5 V, –5.2 V, +12 V, ±15 V, and +24 V.

Theory
Older versions of the Voyager-DE STR have three power supplies connected to this board:

- Quad supply (+5 V, –5.2 V, ±15 V)
- 12 V supply (+12 V)
- 24 V supply (+24 V)

More recent versions have a single power supply that provides +5 V, ±15 V, and +24 V.
Connectors, Test Points, and LEDs

Table 2-3 Connectors, Test Points, and LEDs on the DC Distribution PCA Board

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Function in Single Power Supply</th>
<th>Function in Three Power Supplies</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectors</td>
<td>J1</td>
<td>Power input +5 V, ±15 V</td>
<td>Power input +5 V, ±15 V, −5.2 V</td>
<td>12-pin Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J2</td>
<td>Power input +24 V</td>
<td>Power input +24 V</td>
<td>8-pin Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J3</td>
<td>(Not used)</td>
<td>Power input +12 V</td>
<td>6-pin Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J4</td>
<td>DE Pulse Generator board +5 V, ±15 V</td>
<td>DE Pulse Generator board +5 V, ±15 V, −5.2 V</td>
<td>10-pin Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J5</td>
<td>Control board +5 V, ±15 V, +24 V</td>
<td>Spare +5 V, −5.2 V, ±15 V, +24 V, +12 V</td>
<td>12-pin Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J6</td>
<td>Spare +5 V, ±15 V, +24 V</td>
<td>Spare +5 V, −5.2 V, ±15 V, +24 V, +12 V</td>
<td>12-pin Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J7</td>
<td>Timed Ion Selector board +5 V, ±15 V</td>
<td>Timed Ion Selector board +5 V, ±15 V, −5.2 V</td>
<td>10-pin Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J8</td>
<td>Test points board +5 V, ±15 V, +24 V</td>
<td>Test points board +5 V, −5.2 V, ±15 V, +24 V, +12 V</td>
<td>12-pin Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J9</td>
<td>Spare +5 V, ±15 V, +24 V</td>
<td>Spare +5 V, −5.2 V, ±15 V, +24 V, +12 V</td>
<td>12-pin Mini-Fit</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Function in Single Power Supply</th>
<th>Function in Three Power Supplies</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectors (continued)</td>
<td>J10 DAC +5 V, ±15 V</td>
<td>DAC +5 V, ±15 V</td>
<td>10-pin Mini-Fit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J11 DAC +5 V, ±15 V</td>
<td>DAC +5 V, ±15 V</td>
<td>10-pin Mini-Fit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J12 DAC +5 V, ±15 V</td>
<td>DAC +5 V, ±15 V</td>
<td>10-pin Mini-Fit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J13 DAC +5 V, ±15 V</td>
<td>DAC +5 V, ±15 V</td>
<td>10-pin Mini-Fit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J14 Fan, +24 V</td>
<td>Fan, +24 V</td>
<td>2-pin Mini-Fit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J15 Compressor relay, +24 V</td>
<td>Compressor relay, +24 V</td>
<td>2-pin Mini-Fit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J16 Solenoid valves, +24 V</td>
<td>Solenoid valves, +24 V</td>
<td>2-pin Mini-Fit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J17 48 Bit I/O, +5 V, +24 V</td>
<td>48-Bit I/O +5 V, +24 V</td>
<td>6-pin Mini-Fit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J18 Timed Ion Selector box,</td>
<td>Timed Ion Selector box, +5 V, +24 V</td>
<td>6-pin Mini-Fit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Not used) DVDT, +24 V</td>
<td>2-pin Mini-Fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Not used) Opto trigger, +12 V</td>
<td>2-pin Mini-Fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Not used) Stepper motor, +12 V</td>
<td>2-pin Mini-Fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Not used) Flight (drift tube) PS, +12 V</td>
<td>2-pin Mini-Fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distribution board +24 V</td>
<td>Distribution board, +24 V</td>
<td>4-pin Mini-Fit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control board, +24 V</td>
<td>Control board, +24 V</td>
<td>4-pin Mini-Fit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lift switch</td>
<td>Lift switch</td>
<td>4-pin Mini-Fit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-Voltage switch box, +5 V, +24 V</td>
<td>6-pin Mini-Fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Points</td>
<td>TP1 +5 V</td>
<td>+5 V</td>
<td>TP1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TP2 +15 V</td>
<td>+15 V</td>
<td>TP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TP3 −15 V</td>
<td>−15 V</td>
<td>TP3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TP4 (Not used) −5.2 V</td>
<td>−5.2 V</td>
<td>TP4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TP5 (Not used) +12 V</td>
<td>+12 V</td>
<td>TP5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TP6 +24 V</td>
<td>+24 V</td>
<td>TP6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TP7 Ground</td>
<td>Ground</td>
<td>TP7</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table 2-3 Connectors, Test Points, and LEDs on the DC Distribution PCA Board (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Function in Single Power Supply</th>
<th>Function in Three Power Supplies</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEDs</td>
<td>LED1</td>
<td>−15 V indicator</td>
<td>−15 V indicator</td>
<td>LED1</td>
</tr>
<tr>
<td></td>
<td>LED2</td>
<td>(Not used)</td>
<td>−5.2 V indicator</td>
<td>LED2</td>
</tr>
<tr>
<td></td>
<td>LED3</td>
<td>+5 V indicator</td>
<td>+5 V indicator</td>
<td>LED3</td>
</tr>
<tr>
<td></td>
<td>LED4</td>
<td>+15 V indicator</td>
<td>+15 V indicator</td>
<td>LED4</td>
</tr>
<tr>
<td></td>
<td>LED5</td>
<td>+24 V indicator</td>
<td>+24 V indicator</td>
<td>LED5</td>
</tr>
<tr>
<td></td>
<td>LED6</td>
<td>(Not used)</td>
<td>+12 V indicator</td>
<td>LED6</td>
</tr>
</tbody>
</table>
2.2.4 Low-Mass Gate Delay Timer Board (V750069, V750073)

Overview

The Low-Mass Gate Delay Timer (Detector Voltage Delay Timer, DVDT) PCA is used to delay application of full high voltage to the detector MCP (microchannel plate) until the matrix ions pass. The microchannel plates have an inherent gain recovery time, and the delay of full high voltage preserves the gain until a region of interest.

During instrument operation, the board:

- Captures an input trigger
- Counts off a fixed delay, then counts off a pre-programmed delay corresponding to the Low-Mass Gate value
- Outputs a pulse of fixed width

The circuit has 222-ns resolution and an 8-bit maximum delay with an 8-µs offset, which corresponds to a delay range of 8-to-65 µs.

Theory

The low-mass gate delay timer circuit can be divided into the following blocks (Figure 2-10):

- 18 MHz clock
- Trigger buffer and sync
- Latches
- Counters (used as delays)
- Address decoder
- Integrator
- Regulators
- Drivers
Figure 2-10 Low-Mass Gate Delay Timer Board Block Diagram

- 18 Mhz Clock
- Divide-by-4
- Trigger Buffer
- Synch
- 8-bit Start Register
- 8-bit Start Counter (8-bit Down Counter)
- End Counter (13-bit Down Counter)
- Digital Integrator
- Address Decoder
- Temporary Latch
- 5-bit Load
- Address bus
- Data bus
- 8 bits
- 5-volt regulator, ('069 and '073)
- 12-volt regulator, ('073 only)
- +12v
- +24v ('073)
- +5v
- Clock
- Reset
- Load
- Pulse Out
- +12v
- 12-volt regulator, ('073 only)
- 5-volt regulator, ('069 and '073)
- 8-bit Start Register
- 8-bit Start Counter (8-bit Down Counter)
- Reset
- Temporary Latch
18 MHz Clock and Divide-by-Four

The clock generates a 220-ns (4.5 MHz) timbales used by the counters, synchronizer, and address decoder.

Trigger Buffer

The trigger buffer takes a 3-to-12 V asynchronous pulse event, buffers it to 5 V, synchronizes it to the 4.5 MHz clock, then presents it as an enable signal to the three counters. The pulse event is the DE Trigger.

Start Register

The start register contains the 8-bit delay loaded off the data bus.

Counters

There are three down-counters:

- **Offset delay**—Hard-coded. Offsets the delay by 8 µs.
- **Programmable delay**—Loaded off the data bus. Provides 8-bit value corresponding to the desired delay (after the 8-µsecond offset).
- **End delay**—Hard-coded. Ends the delayed pulse and resets the circuit at approximately 1 s.

When a trigger signal is received from the Trigger Buffer:

1. The first counter counts off an 8-µs offset.
2. After the 8-µs, the delay counter and the reset counter begin counting down.
3. When the start counter reaches zero, a latch is set high as the start of the delayed pulse.
4. When the reset counter reaches zero, the latch is reset as the end of the delayed pulse. The rest of the circuit is also reset, and counters are reloaded in preparation for the next input trigger.

Address Decoder and Digital Integrator

The address decoder decodes the address lines and the load control line. The decoded load latches the data on the address bus to a temporary latch. The width of the decoded load is then measured with a digital integrator, and the appropriate action is taken, as indicated in Table 2-4.

Table 2-4 Address Decoding Criteria and Actions

<table>
<thead>
<tr>
<th>If Decoded Load Is …</th>
<th>The Signal Is …</th>
<th>Action Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longer than 1.1 µs</td>
<td>Data</td>
<td>The data is latched through to the start register and the delay counter.</td>
</tr>
<tr>
<td>Shorter than 1.1 µs</td>
<td>Noise</td>
<td>The load is ignored.</td>
</tr>
</tbody>
</table>

Drivers

The line drivers take the delayed pulse from the programmable logic circuit and provide enough current to drive the cabling to devices.
Regulators

The original release of the V750069 DVDT board is powered by +12 V provided by the system. An onboard regulator supplies +5 V for the board.

The next release, board V750073, is powered by +24 V. Two regulators are present on the board: one to provide +5 V and one to provide +12 V for the low-mass gate and flight-tube (drift-tube) power supply circuits.

Types of Signals

The input signals to the DVDT board consist of:

- A trigger event (on newer systems, a DE pulse; on older systems, a laser trigger)
- A computer-generated enable signal
- Data and address lines from the Voyager bus
- +24 V or +12 V

The output signals from the pulse generator consist of:

- A delayed pulse to the low-mass gate packs
- Power connections to the low-mass gate packs
- Power connection to the flight-tube (drift-tube) power supply

Connectors, Headers, Jumpers, Test Points, and Switches

Table 2-5 Connectors, Headers, Jumpers, Test Points, and Switches on the Low-Mass Gate Timer PCA

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectors</td>
<td>J1</td>
<td>Voyager bus</td>
<td>34-position dual-row header</td>
</tr>
<tr>
<td></td>
<td>J2</td>
<td>DE pulse in/pwr out (not normally used)</td>
<td>3-position 0.1-inch header</td>
</tr>
<tr>
<td></td>
<td>J3</td>
<td>+12 V power in (V750069; earlier models only)</td>
<td>4-position 0.1-inch header</td>
</tr>
<tr>
<td></td>
<td>J4</td>
<td>DE pulse in (not normally used)</td>
<td>3-position 0.1-inch header</td>
</tr>
<tr>
<td></td>
<td>J5</td>
<td>Delayed pulse to Linear Low-Mass Gate PCA</td>
<td>5-position 0.1-inch header</td>
</tr>
<tr>
<td></td>
<td>J6</td>
<td>Delayed pulse to Reflector Low-Mass Gate PCA</td>
<td>5-position 0.1-inch header</td>
</tr>
<tr>
<td></td>
<td>J7</td>
<td>Enable in from control board</td>
<td>4-position 0.1-inch header</td>
</tr>
<tr>
<td></td>
<td>J8</td>
<td>DE pulse in</td>
<td>BNC</td>
</tr>
<tr>
<td></td>
<td>J9</td>
<td>Flight-tube (drift-tube) power out</td>
<td>2-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J10</td>
<td>+24 V power in (V750073; later models only)</td>
<td>4-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J11</td>
<td>Programming header</td>
<td>10-position dual-row header</td>
</tr>
</tbody>
</table>

(continued)
Table 2-5 Connectors, Headers, Jumpers, Test Points, and Switches on the Low-Mass Gate Timer PCA (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switches</td>
<td>S1</td>
<td>Reset</td>
<td>Push button</td>
</tr>
</tbody>
</table>
| | S2 | First 5 dips determine address
Sixth dip not connected
Seventh dip selects XL
Eighth dip ties enable to Oscillator enable
3-Bit Addressing Defaults:
S2-1 is on
S2-2 is off
S2-3 to 5 are on
S2-6 to 8 are off
5-Bit Addressing Defaults:
S2-1 is on
S2-2 is off
S2-3 is on
S2-4 to 5 are off
S2-6 to 8 are off | 8-position DIP |
| Test Points | TP1 | Pulse in | NA |
| | TP2 | Pulse out 1 | NA |
| | TP3 | Pulse out 2 | NA |
| | TP4 | +12 V | NA |
| | TP5 | +5 V | NA |
| | TP6 | Comparator out | NA |
| | TP7 | 18 MHz clock | NA |
| Diodes | D1 | Pulse in | NA |
| | D2 | Pulse out | NA |
| | D3 | Low-Mass Gate on | NA |
| | D4 | +5 V | NA |
| | D5 | +12 V | NA |
2.2.5 Low-Mass Gate Driver Boxes (V700635, V700643) and Detector Filter Bias (V750032)

Overview

Low-mass ions from the matrix usually are not of interest, yet they can be produced in such large quantities that they may overload the detector. The Low-Mass Gate (LMG) is used to delay applying full high voltage to the detector microchannel plate until the matrix ions pass. The microchannel plates have an inherent gain recovery time, and the delay of full voltage preserves the gain until a region of interest. During the period the full voltage to the detector is delayed, ions strike the detector but only a weak signal is generated.

There are two versions of the LMG. Figure 2-10 and Figure 2-11 show the locations of the circuit appropriate boards. The two versions are:

- **Positive Pulse PCA**—Mounted in a box that has two MHV (Medium High Voltage) connectors (Figure 2-13). This PCA controls a single plate MCP (microchannel plate) detector associated with the High Current Detector.
- **Negative Pulse PCA**—Mounted in a box that has three MHV (Medium High Voltage) connectors (Figure 2-14). This PCA controls a dual MCP (chevron) detector and is associated with the Detector Filter Bias (DFB) PCA.

![Figure 2-11 Low-Mass Gate Driver Boxes and Delay Timer Board Locations](image)

![Figure 2-12 Detector Filter Bias](image)
Figure 2-13 Block Diagram of the Low-Mass Gate Positive Pulse

Legend:

= High Voltage

= Control & Power

Jx-y = PCB Pin Assign.

(Jx-y) = Assy Pin Assign.

Programmable 0 to 3kV P.S.
Negative Gnd

High-Current Detector

Single MCP (ions)
Scintillator - (electrons)
Scintillator - (photons)

Digitizer Input Signal

V700643 DVD LMG Positive Box Assy
V750066 PCA LMG Positive
V107049 PCB LMG Pos/Neg
V775029 Cbl Assy DVD LMG
Figure 2-14 Block Diagram of the Low-Mass Gate Negative Pulse

Legend:

- High Voltage
- Control & Power

Jx–y = PCB Pin Assign.
(Jx–y) = Assy Pin Assign.

Detector Filter Bias Board
V750032 PCA Det. Fltr
V107025 PCB Det. Fltr

Programmable 0 to 3kV P.S.
Positive Gnd

V700635 DVD LMG Negative Box Assy
V750060 PCA LMG Negative
V107049 PCB LMG Pos/Neg
V775029 Cbl Assy DVD LMG
A configurable PCB is used to assemble both the positive and the negative LMG units. Both boxes also use the same internal cable. The following chart relates the part numbers for these three options.

<table>
<thead>
<tr>
<th>LMG Positive</th>
<th>LMG Negative</th>
<th>Detector Filter Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>V700643 DVD LMG Box Assembly, Positive (contains 2 MHV connectors)</td>
<td>V700635 DVD LMG Box Assembly, Negative (contains 3 MHV connectors)</td>
<td>N/A</td>
</tr>
<tr>
<td>V750066 PCA LMG Positive</td>
<td>V750060 PCA LMG Negative</td>
<td>V750032 PCA Detector Filter Bias Board</td>
</tr>
<tr>
<td>V107049 PCB LMG</td>
<td>V107049 PCB LMG</td>
<td>V107025 PCB PCA Detector Filter Bias Board</td>
</tr>
<tr>
<td>V775029 CBL Assembly, DVD LMG (internal to box assembly)</td>
<td>V775029 CBL Assembly, DVD LMG (internal to box assembly)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Theory

WARNING

ELECTRICAL SHOCK HAZARD. Potentials in the order of 3000 V dc are present on these boards. Safe operating procedures and proper use of equipment are the responsibility of the authorized and qualified service person. Precautions must be taken to protect against possible serious and/or fatal bodily injury.

Low-Mass Gate Switches

The Voyager Low-Mass Gate options convert a TTL input pulse into a floating high-voltage pulse. The Positive Pulse and Negative Pulse block diagrams illustrate how the TTL input logic is isolated from the floating high-voltage output circuits by the optical signal coupler and the DC/DC isolation converter. A common mode inductor chokes transient ground currents resulting from rapid high-voltage switching. The output switch is a 1 kV MOSFET. The HV voltage divider resistors are configured for positive or negative operation by jumpers on the PCB.

There are two identical inputs:

- **Pin 2**—Receives the TTL pulse. The LMG enables the detector for the duration of the pulse.
- **Pin 3**—Enables or disables the LMG function. If high, it enables the MOSFET switch continuously and the detector generates signal during the entire spectrum.

NOTE: For the detector to function properly, you must have input to either Pin 2 or Pin 3. Failure to provide this input prevents the detector from generating a signal.
The TP1-TP2 jumper is an optional disable input. The PCA has a +12 V dc power input and draws
45 mA in normal operation. Dynamic operation can be observed using Tektronix P5100, 2500 V scope
probes. Figure 2-15 and Figure 2-16 illustrate operation in negative and positive modes and the
negative and positive detector application circuits.
Applications
The following describes the applications for negative and positive pulse.

Detector Filter Bias Board (Negative Pulse)
The Detector Filter Bias board provides a method of tapping-off 1/11 of the full negative voltage to make the Anode slightly positive relative to the dual microchannel plate detector. When the ions strike the microchannel plate, electrons are liberated and attracted to the Anode by the positive bias. The resulting signal is applied to the digitizer input.

High Current Detector (Positive Pulse)
The positive version of the LMG is used to polarize a single microchannel plate that converts ion collisions to free electrons. The electrons are attracted to a scintillator by a 15 kV bias voltage. The scintillator converts electron collisions to light (photons). The photons strike a photomultiplier unit that converts the information back to an electrical signal that is applied to the digitizer input.

Specifications
Power
Power is +12 V dc at approximately 37 mA idle and 45 mA switching.

Input
The TTL gate pulse input impedance is 10 Mohm resistive.

Output
The external programmable power supplies provide either zero to +3 kV or zero to –3 kV. When the input signal is low, two-thirds of the programmed voltage appears on the J2 pulse output. When the input is high, the full-programmed voltage appears on the J2 output.

Connectors
The following table describes the connectors.

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Connector Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 PCB HV Input</td>
<td>HV = 0 to ± 3000 V dc</td>
<td>PCB internal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MHV external</td>
</tr>
<tr>
<td>J2 PCB HB Pulse Output</td>
<td>2/3 HV to full HV</td>
<td>PCB internal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MHV external</td>
</tr>
<tr>
<td>J3-1 PCB (J1-1 external)</td>
<td>Ground</td>
<td>PCB internal</td>
</tr>
<tr>
<td>J3-2 PCB (J1-2 external)</td>
<td>TTL Enable Input</td>
<td>DB15 Male external</td>
</tr>
<tr>
<td>J3-3 PCB (J1-3 external)</td>
<td>TTL Signal Input</td>
<td></td>
</tr>
<tr>
<td>J3-4 PCB (J1-4 external)</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>J3-5 PCB (J1-5 external)</td>
<td>+12 V dc Power Input</td>
<td></td>
</tr>
<tr>
<td>J4 PCB HV Bias Output</td>
<td>HV = 0 to ± 3000 V dc</td>
<td>PCB internal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MHV external</td>
</tr>
</tbody>
</table>
2.2.6 Timed Ion Selector (TIS) Assembly (V700471)

Overview

The Timed Ion Selector (TIS) assembly provides a differential voltage pulse of ±950 V for the selection of ions within a specified mass range. When the positive and negative voltages are present on gate elements in the flight (drift) tube, all charged ions are deflected from the normal flight path. During the time that the TIS voltages are switched to ground potential, all ions pass unimpeded down the flight tube.

![TIS assembly](image)

Figure 2-17 TIS Assembly Location (Voyager-DE STR Center Rear View)

Theory

WARNING

ELECTRICAL SHOCK HAZARD. Potentials in the order of 1000 V dc are present on this assembly. Safe operating procedures and proper use of equipment are the responsibility of the authorized and qualified service person. Precautions must be taken to protect against possible serious and/or fatal bodily injury. More than 0.02 joules of stored energy are present at outputs J3 and J4.

The TIS assembly (V700471 TIS ASSY) is a replaceable unit that contains an OEM (original equipment manufacturer) PCA, V109032 HV Pulse Module ± 1000 V. The block diagram (Figure 2-18 on page 2-27) provides an overview of the theory of operation. The PCA Assembly diagram (Figure 2-19 on page 2-28) illustrates the location of the I/O connectors and other important components.
Electronics Common in Most Voyager-DE STR Instruments

Figure 2-18 TIS Module Block Diagram
Figure 2-19 TIS PCA Assembly Diagram

All the power requirements for this assembly are provided by the +24 V dc input.

Power for the TTL logic and other low-voltage electronics is provided by DC/DC converters. The two high-voltage power modules have +24 V inputs and zero-to-1000 V outputs. The output voltage for each of the two modules can be measured with a voltmeter (VOM) at the 100:1 test point J1/J2 or J5/J6. Adjustment of their output to ±950 V is controlled by potentiometers R3 and R75. Dynamic operation can be observed using Tektronix P5100, 2500 V oscilloscope probes.

When 24 V dc is applied to the power input and HV Enable Input is pulled high (or allowed to float high), +950 V dc and −950 V dc appear at outputs J3 and J4, respectively. High voltage is enabled at the same time and as a result of the same conditions as all other Voyager workstation high-voltage sources.

To completely disable the high voltage, see “Disabling High Voltage” on page 5-42.

The TTL gate control signal input has an on-board 50-ohm termination. When the TTL input gate signal is high, the positive and negative 950 V outputs are both switched to ground (zero volts). The gate input logic is coupled by a torroidal transformer to totem-pole FET output switches. Each polarity has:

- A FET for rapid pull-down to ground
- A FET for rapid pull-up to voltage
- Series termination resistors that serve as convenient points for attaching an oscilloscope probe to observe dynamic operation
Specifications

Specifications are summarized in the following table:

<table>
<thead>
<tr>
<th>Item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input power</td>
<td>+24 V dc at approximately 200 mA</td>
</tr>
<tr>
<td>Gate Pulse</td>
<td>TTL gate pulse input impedance, 50 ohms resistive</td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>J3</td>
<td>0 to +1000 V dc</td>
</tr>
<tr>
<td>J4</td>
<td>0 to −1000 V dc</td>
</tr>
</tbody>
</table>

Normal operation is at ±950 V dc. The TIS gates draw no current other than the instantaneous current required to switch a capacitive load. Output short-circuit protection is provided on the PCA.
Connectors

Table 2-6 Connectors on the TIS Board

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1-02</td>
<td>5 V dc return (ground)</td>
<td>DB15 male</td>
</tr>
<tr>
<td>P1-03</td>
<td>+5 V dc (Not used)</td>
<td>DB15 male</td>
</tr>
<tr>
<td>P1-06</td>
<td>TTL gate pulse in (50 ohm)</td>
<td>DB15 male</td>
</tr>
<tr>
<td>P1-07</td>
<td>Pulse in return (ground)</td>
<td>DB15 male</td>
</tr>
<tr>
<td>P1-12</td>
<td>24 V dc return (ground)</td>
<td>DB15 male</td>
</tr>
<tr>
<td>P1-14</td>
<td>HV enable (TTL Hi)</td>
<td>DB15 male</td>
</tr>
<tr>
<td>P1-15</td>
<td>+24 V dc power in</td>
<td>DB15 male</td>
</tr>
<tr>
<td>J1</td>
<td>0 to +1000 V (100:1 divider)</td>
<td>Test point</td>
</tr>
<tr>
<td>J2</td>
<td>Ground return</td>
<td>Test point</td>
</tr>
<tr>
<td>J6</td>
<td>0 to −1000 V (100:1 divider)</td>
<td>Test point</td>
</tr>
<tr>
<td>J5</td>
<td>Ground return</td>
<td>Test point</td>
</tr>
<tr>
<td>J3</td>
<td>0 to +1000 V</td>
<td>Coax output</td>
</tr>
<tr>
<td>J4</td>
<td>0 to −1000 V</td>
<td>Coax output</td>
</tr>
</tbody>
</table>

See Section 5.5, Flight Tube and Mirror Chamber for how to adjust the TIS voltage.
2.2.7 TTL Output Opto-Trigger Board (V750065)

Overview

The TTL Output Opto-Trigger board has two parts: a laser pulse detection circuit and an “At Limit” feedback circuit.

Theory

The primary function of the Opto-Trigger PCA is to detect when the laser fires. This feedback is required because a variable delay exists between when the laser is triggered electronically and when the laser actually fires. The detected laser pulse is then synchronized with the 100-MHz clock. All time-based measurements are then based on this time.

The secondary function of the Opto-Trigger PCA is to feed back the “At Limit/Home” position of the stepper-motor-driven neutral-density attenuator to the Autosampler Control PCA. The “At Limit/Home” position is the position where the attenuation strength is maximum.

Laser Pulse Detection Circuit

The beam splitter directs a part of the laser beam onto the photodiode (CR1). The photodiode turns On when the beam hits it. When CR1 turns ON, Q1 and Q2 also turn On. This produces a positive signal at the input of the buffers U1 and U2. The signal is buffered by these chips and output to J4/J5, then sent to the pulse generator. The signal stays high until the laser stops firing.

“At Limit” Feedback Circuit

The attenuator wheel has reflective tape at the position where the attenuation strength is maximum (the position where minimum laser energy passes). The limit switch consists of an LED and a phototransistor. When the attenuator wheel is in the Home position, the light from the LED is reflected off the reflector tape onto the phototransistor. This causes the phototransistor to turn on and subsequently turns on Q3. This signal is then sent to the Autosampler Control PCA.

Connectors

Table 2-7 Connectors on the TTL Output Opto-Trigger PCA

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>Power input +5 V, +15 V, and −15 V</td>
<td>4-pin Mini-Fit</td>
</tr>
<tr>
<td>J2</td>
<td>“At Limit” sensor power and read-back</td>
<td>4-pin Mini-Fit</td>
</tr>
<tr>
<td>J3</td>
<td>“At Limit” read-back to stepper motor control board</td>
<td>2-pin Mini-Fit</td>
</tr>
<tr>
<td>J4</td>
<td>Laser-detected pulse to control board</td>
<td>SMA</td>
</tr>
<tr>
<td>J5</td>
<td>Laser-detected pulse (spare)</td>
<td>SMA</td>
</tr>
</tbody>
</table>
2.3 Electronics Only in Newer Model Instruments

Instruments with serial numbers 4154 and later have the following electronics:

- Beam-steering V750091
- DE switch box V725115 (3 Hz)/V725125 (~15 Hz)
- Einzel lens (voltage divider box) 4317251
- 48-bit I/O board V750033
- MALDI control board V750082 and V750102-001(STR), V750102-002(DE-PRO), V750102-003 (Voyager-DE)

Figure 2-20 shows the housing of these electronics.

2.3.1 Beam-Steering Board (V750091)

Overview

Instruments with serial numbers 4154 and later have beam-steering plates and an einzel lens to focus and direct the beam of ions. There are two horizontal and two vertical beam-steering plates. This combination of X-Y deflection plates and an adjustable 500 V power supply allows fine-tuning of the ion trajectory. Earlier instruments (serial numbers 4153 and earlier) had a guide wire and flight-tube (drift-tube) power supply.

Before shipment, the beam-steering circuit assembly is optimized for system performance. If the instrument is disassembled or components are shifted out of factory alignment, the optimization procedure can be repeated by a trained field service engineer. For a description of this procedure, see Chapter 5, Troubleshooting by Components.

The Beam-Steering board assembly is installed where the V750061 Flight-Tube (Drift Tube) Power assembly was located in earlier instruments (Figure 2-21 on page 2-34). The Beam-Steering board assembly uses the same power and control connections as the former Drift Tube Power assembly.
Chapter 2 Electronics

Figure 2-21 Beam Steering Board Location

Operation of the beam-steering voltage is transparent to the user. When acceleration voltage is changed, beam-steering voltage tracks in a linear fashion.

Theory

The beam-steering assembly consists of X-Y deflection plates and an adjustable/programmable dual power supply board (Figure 2-22).

Figure 2-22 Beam-Steering Board Block Diagram
The X-Y plates are positioned early in the ion flight path. They interface to the outside via a 4-wire high-voltage vacuum feedthrough. Two twisted pair of 600 V wire connect the feedthrough to the board assembly.

The voltage applied to each plate is proportional to the ion acceleration voltage. A polarity switch and a trim pot (trimmer potentiometer) tailor each beam axis control to the individual instrument.

The deflection voltages are automatically reversed when the instrument is reconfigured from positive ion mode to negative ion mode. The deflection voltages are also automatically enabled and disabled along with the other system high voltages.

The Beam-Steering DAC address is at the same address as the Source Power Supply DAC address (address 7, 3-bit mode; address 31, 5-bit mode). Therefore, changing the source power voltage makes the same change to the beam-steering board voltage. In earlier instruments containing a guide wire, when the source voltage changed, the guide wire voltage tracked the source voltage, based on a percentage.

Before shipment, the system is optimized for performance. During final test, the optimum polarity is selected by actuating the slide switches, and the optimum voltage scaling for each axis is determined by adjusting the potentiometers while running a prescribed sequence of test samples. The values are documented on a label adhered to the right drawer base, next to the beam steering board. The values are based on an acceleration/source voltage of 25 kV.

Specifications

Power

Power to the five relays is supplied by +24 V dc at approximately 30 mA. Power to the two 12 V-to-500 V programmable DC/DC converters is supplied by +12 V dc at approximately 40 mA from the DVDT PCA. The converters specify a no-load to full 2 mA load current requirement of 16 mA to 150 mA. The deflector plates are essentially no-load devices.

Input

Input impedance load presented to the DAC is 3.6 K resistive. An input divider scales the DAC output of 0 to 10 V to match the DC/DC converter requirement of 0 to 5 V.

Output

Each axis has available 0 to 500 V dc. For the deflector plates, however, the output is current limited to 400 µA, so no damage results from a continuous short circuit. The DC/DC converters specify a no-load ripple of less than 0.002% or 20 ppm. Load regulation for 0 to 100% current is 0.01%, and line regulation from 11.5 V to 16.0 V input is 0.1%.

Connectors, Switches, and Test Points

Table 2-8 Connectors, Switches, and Test Points on the Beam-Steering Board

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectors</td>
<td>J1</td>
<td>Power output:</td>
<td>14-pin Mini-Fit™</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontal 0 to 500 V and Return</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical 0 to 500 V and Return</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J2</td>
<td>HV Enable, Post/Leg Ion Polarity,</td>
<td>8-pin MTA™ locking header,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+24 V Relay Power</td>
<td>0.1-inch spacing</td>
</tr>
<tr>
<td></td>
<td>J3</td>
<td>+12 V power for dual DC/DC</td>
<td>2-pin MTA locking header,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 V converters</td>
<td>0.1-inch spacing</td>
</tr>
</tbody>
</table>
Table 2-8 Connectors, Switches, and Test Points on the Beam-Steering Board (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>J4</td>
<td>DC/DC program input from DAC</td>
<td>4-pin MTA locking header, 0.1-inch spacing</td>
<td></td>
</tr>
<tr>
<td>Switches</td>
<td>SW1 VERTICAL (+ and −)</td>
<td>Vertical deflection polarity switch</td>
<td>SPDT</td>
</tr>
<tr>
<td></td>
<td>SW2 HORIZONTAL (+ and −)</td>
<td>Horizontal deflection polarity switch</td>
<td>SPDT</td>
</tr>
<tr>
<td>Test Points</td>
<td>HPOS1, HNEG1</td>
<td>Positive and negative test points for digital voltmeter</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>VPOS1, VNEG1</td>
<td>Positive and negative test points for digital voltmeter</td>
<td>Test point</td>
</tr>
</tbody>
</table>
2.3.2 DE Switch Box V725115/V725125

The DE switch box (Figure 2-23) provides a very fast and stable high-voltage pulse to accelerate the sample ions after they are desorbed by a laser pulse.

![DE Switch Box Location](PB100853)

Figure 2-23 DE Switch Box Location

The DE switch box operates in conjunction with two programmable HV (high voltage) power supplies. When the laser pulse fires, one supply is providing a fixed “grid” rest value so that the ions do not see a voltage gradient until the DE switch box fires. The other supply is providing a higher “source”, so when the switch box fires, the ion group accelerates past the grid and down the flight tube.

Theory

WARNING

ELECTRICAL SHOCK HAZARD. Potentials up to 30,000 V dc are present in this assembly. Safe operating procedures and proper use of equipment are the responsibility of the authorized and qualified service person. Precautions must be taken to protect against possible serious and/or fatal bodily injury. In excess of 4 joules of stored energy may be present inside the enclosure and at the external terminals. This energy may remain stored in the capacitors for some time after all external connectors have been removed.

The DE switch box is comprised of:

- A 6.25 in. × 6.25 in. × 12.5 in Lexan® enclosure
- An HV solid-state switch
- Associated components necessary to provide the sample plate with voltage pulses to accelerate ions

Three HV relays are included, which, in conjunction with reversible power supplies, permit operation in either positive ion or negative ion mode.
Figure 2-24 shows two basic versions of the DE switch.
The series of events are as follows:

1. Immediately after the laser ionizes the sample, the Behlke input receives a 2 µS TTL-level pulse, then the output closes for 10 µS. 10 µS is enough time to launch all the ions generated by the laser pulse.

2. The 4700 pF capacitance is briefly placed in parallel with the source capacitance. The voltage across the source quickly jumps to a value only slightly less than the initial value across the 4700 pF capacitor.

3. The diode is reversed-biased to disconnect the source from the grid power supply.

4. The Behlke switch opens. The elevated source voltage exponentially decays through the parallel 200 Mohm resistor.

5. When it decays to the original grid rest voltage level, the diode again conducts and the grid power supply again maintains the source at the grid rest voltage.
Table 2-9 describes the characteristics of each DE switch box model.

Table 2-9 Characteristics of the Three DE Switch Box Models

<table>
<thead>
<tr>
<th>Feature/Condition</th>
<th>V725059</th>
<th>V725115</th>
<th>V725125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial numbers of Voyager on which installed</td>
<td>NA</td>
<td>STR 4142-4160<sup>1</sup> DE-Pro 6056-6130 Voyager-DE 1143-1170</td>
<td>STR 4161 and later DE-Pro 6131 and later Voyager-DE 1171 and later</td>
</tr>
<tr>
<td>Laser pulse rate</td>
<td>3 Hz</td>
<td>3 Hz</td>
<td>3 to 100 Hz (with grid voltage to source voltage ratio of 67% or greater)</td>
</tr>
<tr>
<td>Source pulse voltage isolation from the grid rest voltage</td>
<td>401 Mohm resistor network</td>
<td>401 Mohm resistor network</td>
<td>Diode</td>
</tr>
<tr>
<td>HV terminals</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Damping resistors in the grid cables</td>
<td>This resistance is required</td>
<td>This resistance is included in the 3 Mohm and 1 Mohm resistors.</td>
<td>This resistance is included in the 3 Mohm and 1 Mohm resistors.</td>
</tr>
<tr>
<td>Small wire harness</td>
<td>Bottom of the box</td>
<td>Bottom of the box</td>
<td>Replaced by green V750074 printed circuit relay control board.<sup>2</sup></td>
</tr>
<tr>
<td>Power required</td>
<td>24 V and 5 V</td>
<td>24 V and 5 V</td>
<td>24 V dc only</td>
</tr>
</tbody>
</table>

¹Instruments S/N 4154 through 4160 may have been upgraded from V725115 to V725125.

²This circuit board also includes a 24 V-to-5 V dc/dc converter to supply the 5 V dc required by the Behlke switch.

The new model, V725125, can be used only on newer Voyager workstations that contain a MALDI Consolidated Control Board. This board provides switch-selectable firmware for compatibility with the old and new DE switches. In these systems, the laser pulse rate is further limited by the digitizer speed and the maximum pulse rate of the laser itself.
Figure 2-25 illustrates operation on the V725125 operating at a pulse rate of 100 Hz.

Figure 2-25 A illustrates voltage vs. distance. Note that the grid potential remains fixed while the source or sample potential is pulsed above the grid potential to launch the ions.

Figure 2-25 B illustrates source voltage vs. time. Each time the Behlke switch receives a TTL level pulse, the source voltage pulses to the higher level, then exponentially decays to the grid rest voltage level.

Figure 2-25 C is an expanded voltage vs. time diagram showing the leading edge of a single source pulse. Approximately 120 ns after the leading edge of the TTL level control pulse, the source voltage pulses from the rest grid level to the source pulse level. The rise time of the HV pulse is typically 50 ns.

A Tektronix P6015A HV probe connected to a special HV “Y” adapter cable is required to view these waveforms.
Specifications

Power

Table 2-10 Low-Voltage Power Requirements

<table>
<thead>
<tr>
<th>Switch Assembly</th>
<th>+5 V dc Requirements</th>
<th>+24 V dc Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>V725125</td>
<td>None</td>
<td>100 mA to 700 mA</td>
</tr>
<tr>
<td>V725115</td>
<td>400 mA</td>
<td>0 mA to 600 mA</td>
</tr>
<tr>
<td>V725059</td>
<td>400 mA</td>
<td>0 mA to 600 mA</td>
</tr>
</tbody>
</table>

Table 2-11 High-Voltage Power Requirements

<table>
<thead>
<tr>
<th>Supply</th>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source power supply</td>
<td>0 to +30 kV or 0 to –30 kV</td>
<td>0 to 400 µA</td>
</tr>
<tr>
<td>Grid power supply</td>
<td>0 to +30 kV or 0 to –30 kV</td>
<td>0 to 400 µA</td>
</tr>
</tbody>
</table>

Input

Input impedance expects TTL level pulse generator capable of driving a 50 ohms load.

Output

Maximum source pulse level of 30 kV. Grid rest level must be at least 67% of source level.

Connectors

Table 2-12 Connectors on the V750074 Board Within the DE Switch Box

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>Low-voltage power input, relay control input, and TTL pulse input</td>
<td>Amphenol 206486-1</td>
</tr>
<tr>
<td>J2</td>
<td>Source HV power supply input</td>
<td>Alden B102</td>
</tr>
<tr>
<td>J3</td>
<td>Grid feedthrough (Grid HV potential)</td>
<td>Alden B102</td>
</tr>
<tr>
<td>J4</td>
<td>Source feedthrough (Source HV pulse output)</td>
<td>Alden B102</td>
</tr>
<tr>
<td>J6</td>
<td>Grid HV power supply input</td>
<td>Alden B102</td>
</tr>
</tbody>
</table>
Firmware Configuration (MALDI Consolidated Control Board)

Table 2-13 Firmware Configuration

<table>
<thead>
<tr>
<th>Switch Box Assembly</th>
<th>Schematic</th>
<th>MALDI Consolidated Control Board Switch S1, Position 3<sup>A</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>V725125</td>
<td>V750095</td>
<td>On 3 Hz to 100 Hz</td>
</tr>
<tr>
<td>V725115</td>
<td>V750075</td>
<td>Off 3 Hz</td>
</tr>
<tr>
<td>V725059</td>
<td>V725059</td>
<td>Off 3 Hz</td>
</tr>
</tbody>
</table>

^AThe four positions are numbered 0 through 3. Therefore, the fourth dipswitch position is named Position 3.

LEDs

LED indicators on the bottom of the DE box high-voltage relays indicate relay actuation. *Table 2-14* illustrates the LED pattern for each Voyager workstation operation mode. Note that the green PCB on the bottom of the V725125 box assembly also has an orange LED to indicate that the 24 V to 5 V dc/dc converter is operating correctly. Voyager workstation mode indication is also is provided on the V750082 MALDI Control Board at location D3 by LEDs labeled RLY1, RLY2, and RLY3.

Table 2-14 DE Switch Box LED Displays

<table>
<thead>
<tr>
<th>Switch Assembly</th>
<th>Voyager Workstation Mode</th>
<th>5 V dc Orange</th>
<th>Relay-1 Yellow</th>
<th>Relay-2 Green</th>
<th>Relay-3 Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>V725125</td>
<td>DE Positive</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>DE Negative</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Continuous Positive</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Continuous Negative</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>V725115</td>
<td>DE Positive</td>
<td>N/A</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>DE Negative</td>
<td>N/A</td>
<td>On</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Continuous Positive</td>
<td>N/A</td>
<td>On</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>Continuous Negative</td>
<td>N/A</td>
<td>On</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>V725059</td>
<td>DE Positive</td>
<td>N/A</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>DE Negative</td>
<td>N/A</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Continuous Positive</td>
<td>N/A</td>
<td>On</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>Continuous Negative</td>
<td>N/A</td>
<td>On</td>
<td>Off</td>
<td>On</td>
</tr>
</tbody>
</table>
2.3.3 Einzel Lens Electronics
(Voltage Divider Box, 4317251)

Overview
This assembly is a resistive tap off the source power supply that provides 50% of the source voltage to the einzel lens. The Voltage Divider box is mounted on the side of the DE switch box enclosure (Figure 2-26).

![Diagram](https://via.placeholder.com/150)

Figure 2-26 Voltage Divider Box Location (Voyager-DE STR Left Cabinet Rear View)

Theory
The Voltage Divider box consists of an epoxy-potted plastic or metal box with two series-500 Mohm resistors. The one end (top) of the resistors is connected to two HVPS (high voltage power supply)-type Alden connectors. The other end (bottom) of the resistors is tied to the Voltage Divider Box ground lug. The Voltage Divider Box ground is tied to the instrument frame ground through a braided cable.

WARNING

ELECTRICAL SHOCK HAZARD. Severe electrical shock can occur if the Voltage Divider box ground lug is not grounded to the instrument frame. The ground lug carries high voltage unless grounded. Failure to properly ground the ground lug can also damage the einzel lens.

The middle (50%) of the resistors is brought out to another HVPS-type Alden connector.

The two connectors at the top of the Voltage Divider Box (Figure 2-27 on page 2-45) allow you to connect the source HVPS to the Voltage Divider Box and also to the DE switch box. The connector on the bottom of the box provides a connection to the einzel lens.
Figure 2-27 Voltage Divider Box Connectors

Connectors

<table>
<thead>
<tr>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source HVPS</td>
<td>Alden HV 40 kV</td>
</tr>
<tr>
<td>DE switchbox source PS</td>
<td>Alden HV 40 kV</td>
</tr>
<tr>
<td>Einzel lens</td>
<td>Alden HV 40 kV</td>
</tr>
<tr>
<td>Ground lug</td>
<td>10-32 and hardware</td>
</tr>
</tbody>
</table>
2.3.4 48-Bit I/O Board with Game Port (V750033)

Overview

This I/O board has a dual function:

- It interfaces the input and output control signals between the computer and the other system components.
- It interfaces, processes, and controls Game Port functions.

Theory

The I/O board has three 8255 parallel interface adapter (PIA) chips. Each chip has an 8-bit data bus, 2-bit addressing, a chip select, and a read/write line, all of which are connected to the computer data bus. In addition each chip has three 8-bit I/O ports. Only two of the three chips are used; U38 is a spare. All inputs and outputs to the 8255 chips are optically isolated through an HCPL-2630 chip. The isolators prevent noise on the computer bus and offer protection from high-voltage arcs in the system.

NOTE: +5 V (5 B on older schematics) was supplied from the Voyager workstation system (DC Distribution PCA) in older systems. In newer systems, this +5 V cable is not connected to the card, nor required, and the buffered 5 V and grounds are jumped to obtain power from the computer. Adding jumpers JP2 2-4, 6-8 and JP3 2-4 and 6-8 enables this.

Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>J0</td>
<td>Enable, address, and I/O</td>
<td>26-pin ribbon</td>
</tr>
<tr>
<td>J1</td>
<td>Data and I/O</td>
<td>26-pin ribbon</td>
</tr>
<tr>
<td>J3</td>
<td>+5 V (5 B on older schematics) power</td>
<td>Plug</td>
</tr>
</tbody>
</table>
The I/O Board has one LED, the +5 V LED. The function is Buffered 5 V.

2.3.5 MALDI Control Board (V750082 and V750102-001, V750102-002, V7502-003)

Overview

The MALDI consolidated control board consolidates discrete logic functions previously found on the:

- Pulse Generator (Timed Ion Selector) Board
- DAC (source, grid, reflector and Beam Guide) Boards
- Old-style TTL MALDI Control and Distribution Boards

<table>
<thead>
<tr>
<th>Connector</th>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>J4</td>
<td>(Not used)</td>
<td>NA</td>
</tr>
<tr>
<td>J5</td>
<td>(Not used)</td>
<td>NA</td>
</tr>
<tr>
<td>J6</td>
<td>Game port</td>
<td>16-pin ribbon</td>
</tr>
</tbody>
</table>

Table 2-15 Connectors on the 48-Bit I/O Board (Continued)

![Figure 2-29 MALDI Control Board Location](image)

Figure 2-29 MALDI Control Board Location
Table 2-17 on page 2-52 and Figure 2-30 on page 2-58 present the highlights of the MALDI control board.

Systems controlled by this board include the pumps, voltages, and vacuum system. MALDI consolidated control board functions to control the:

- DE switch box
- High-voltage power supply (DAC control and enable, polarity)
- Timed-Ion Selector
- Delayed pulse generator
- Laser trigger
- Interlock sensor

Functions not controlled by the MALDI Control Board are listed in Table 2-16.

Table 2-16 Functions Excluded from the MALDI Control Board

<table>
<thead>
<tr>
<th>Voyager STR</th>
<th>Voyager-DE or DE-Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stepper controlA</td>
<td>Stepper controlB</td>
</tr>
<tr>
<td>DVDT (Low-Mass Gate timer) functions</td>
<td>DVDT (low-mass gate timer) functions</td>
</tr>
<tr>
<td>Reflector DAC</td>
<td></td>
</tr>
<tr>
<td>Beam guide (or beam steering) DAC</td>
<td></td>
</tr>
</tbody>
</table>

ATo provide use of an external laser, the MALDI Control Board is connected directly to the 48-bit IO PCA in the system computer, and the stepper motor signals for the laser attenuator are switched through the Control Board.

Theory

All the MALDI Control Board logic functions are in Altera complex programmable logic devices (CPLDs). All signals to and from the CPLDs are isolated by buffers or drivers.

The buffer section receives 40 bits of control from the computer 48-bit I/O card and supplies 8 bits back. All 48-bits to and from the 48-bit I/O card are immediately buffered (U1, U2, U3, U13, U14, U17).

The 40 bits designated as inputs to the control board are further divided into the Voyager Bus and Discrete IO.

Voyager Bus

The unidirectional Voyager Bus consists of:

- A 16-bit data bus
- Either a 3 or 5-bit address bus
- Two control bits (Load and Latch)
The bus is capable only of receiving data from the computer; it cannot be read from the computer. The Voyager Bus is used in three places:

- Internally to the CPLDs (for trigger generation and DE/TIS pulse generators),
- On the control board itself (for 16-bit DACs)
- As a buffered output from the Control Board to drive external DAC PCAs (reflector and Beam Guide in a STR) and the DVDT PCA (Detector Voltage Delay Timer or Low-Mass Gate delay timer).

DAC/HVPS control

The MALDI consolidated board contains up to four 16-bit DACs (U16, U22, U27, U44) and associated control signals to control high-voltage power supplies (HVPSs). The DACs, which are controlled via the Voyager bus, output a 0 to 10 V signal to control the HVPSs.

The V750102-001 configuration (STR configuration) has two populated DACs, U16 (source control DAC) and U22 (grid control DAC). The other two DACs are unpopulated because beam steering and mirror HVPSs are controlled by discrete DAC PCAs. See Section 2.2.2, **DAC (Digital-to-Analog Converter) Board (V750025)**.

In addition to the DACs, two discrete outputs are associated with HVPS control: Enable and Polarity. U19, a precision voltage source, generates a 5 V reference for the 16-bit DACs.

Laser trigger generation

Laser trigger is generated from one of two sources:

- **Legacy discrete IC/trigger generator**—A 555-based oscillator controlled by pot R 46. To select this circuit, set dipswitch S1 to LASTRGOLD. This circuit can be set from 1 Hz to 200 Hz, but is not programmable by the software.

 Output from this circuit runs through the Altera firmware, to line driver U6, and out SMA connector J6 (TP26).

 If an external laser is present and selected, the corresponding laser trigger line driver is U5 (TP25).

- **CPLD-based digital divider trigger generator**—Available with 5-bit addressing and can be programmed to an optimal setting by the software.

To generate a trigger, two programmable down-counters are preloaded via the Voyager bus. When the laser trigger is enabled (by software):

1. The first counter is enabled, driven by a 63-kHz clock.
2. The first counter counts down from the preloaded value to zero.
3. When the first counter reaches zero, an output is generated, triggering the second counter.
4. The first counter reloads and starts again.
5. The second counter generates the laser trigger leading edge and starts counting down from the preloaded value.
6. When the second counter counts down to zero, it generates the laser trigger trailing edge.
7. The second counter then reloads.
Chapter 2 Electronics

The first counter generates a laser trigger frequency calculated by the following equation.

\[F = \frac{63 \text{kHz}}{[N+X]} \]

Where:

\[N = \text{preloaded 16-bit number} \]
\[X = \text{overhead clock ticks} = 1 \]

For example, if \(N \) is 63, then \(F \) equals approximately 1 Hz.

As in the legacy trigger generator, output from this circuit runs through the Altera firmware to line driver U6, and out SMA connector J6 (TP26).

DE and Timed Ion pulse generators

The 15-bit pulse generators are firmware based and are functionally identical to the stand alone pulse generator described in Section 2.4.4, Pulse Generator PCA V750063.

The DE pulse generator provides triggers to the:

- DE switch box
- Digitizer
- Low-Mass Gate delay timer
- Timed-Ion selector
- Pulse generator

The Timed-Ion pulse generator provides a trigger to the Timed Ion Selector (TIS) Assembly V700471.

Discrete I/O

Input

Input for the consolidated control board from the instrument consists of 8 bits that reflect the state of the linear actuators, flap valves, and load position of the sample stage.

Inputs specify the following conditions:

- Linear 1 actuator extended
- Linear 1 actuator retracted
- Linear 2 actuator retracted
- Flap Door 1 open
- Flap Door 1 closed
- Flap Door 2 closed
- Load Position
- Interlock Status

You can view the state of these signals using the MALDI consolidated control board LEDs D6 and D11.
Output
Discrete outputs from the computer via the MALDI consolidated control board are interlocked through the firmware, buffered, and then sent to drivers that drive the relays and solenoids.

Output are to the:

- Foreline Solenoids 1 and 2
- Vent Solenoid
- Linear Actuators
- Polarity and High-Voltage Enable
- Linear Detector Enable
- Mirror HVPS Enable
- Turbo Pump Delay/Enable
- Camera and Camera lamp
- Timed-Ion Selector control (from Voyager bus)
- DE Switch Box Control (from Voyager bus)
- Laser Interlock

Linear Actuators and Flap Doors

The linear actuators and flap door switches are magnetic reed switches that complete the 5 V interlock circuit.

Interlock Status (System Interlock)

The system interlock consists of a series chain of panel switches. The panel switches, when made, provide a ground to relay K9. When K9 is activated, 24 V switched is available for HVPS and the laser interlock relay, and a signal is sent to the computer via U13-18

Load Position

The Load Position consists of two limit switches, one on the X-axis and one on the Y-axis. The switches are wired in series to ground and when made, present this ground to the computer via U13-3 to signify the sample stage is in the load position.

Turbo 2-Minute Delay

IC U40 provides a 2-minute inhibit signal to the turbo controllers. This delay allows time to generate a rough vacuum.

Polarity, High-Voltage Enable, Linear Detector Enable, Mirror HVPS Enable

The Polarity bit is applied to the source, grid, and mirror HVPSs. The High-Voltage Enable bit is applied to the source and grid power supplies, but not the mirror power supply. The Linear Detector Enable bit enables the linear detector power supply and the Mirror HVPS bit enables the mirror HVPS and the mirror detector power supply.
Connectors, Resistors, and Test Points

Table 2-17 MALDI Control Board Connectors, Resistors, and Test Points

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectors</td>
<td>J0, J1</td>
<td>Workstation 48-bit I/O</td>
<td>26-position ribbon cable</td>
</tr>
<tr>
<td></td>
<td>J2</td>
<td>Power ground</td>
<td>1/4" quick disconnect</td>
</tr>
<tr>
<td></td>
<td>J3</td>
<td>From opto trigger board (detected pulse)</td>
<td>SMA female</td>
</tr>
<tr>
<td></td>
<td>J4</td>
<td>Output from YAG Q-switch (firing pulse)</td>
<td>SMA female</td>
</tr>
<tr>
<td></td>
<td>J5</td>
<td>External laser trigger</td>
<td>SMA female</td>
</tr>
<tr>
<td></td>
<td>J6</td>
<td>Internal laser trigger</td>
<td>SMA female</td>
</tr>
<tr>
<td></td>
<td>J7</td>
<td>DE switchbox control (24V+relay)</td>
<td>8-position Mini-Fit™</td>
</tr>
<tr>
<td></td>
<td>J8</td>
<td>DE Switchbox trigger</td>
<td>SMA female</td>
</tr>
<tr>
<td></td>
<td>J9</td>
<td>Digitizer trigger</td>
<td>SMA female</td>
</tr>
<tr>
<td></td>
<td>J10</td>
<td>DVDT trigger</td>
<td>SMA female</td>
</tr>
<tr>
<td></td>
<td>J11</td>
<td>TIS trigger</td>
<td>SMA female</td>
</tr>
<tr>
<td></td>
<td>J12</td>
<td>TIS control</td>
<td>4-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J14</td>
<td>DAC control, monitors, HVPS enables</td>
<td>DB25 Receptacle</td>
</tr>
<tr>
<td></td>
<td>J15</td>
<td>Vacuum gauge serial connection (to multigauge controller)</td>
<td>DB9 plug</td>
</tr>
<tr>
<td></td>
<td>J17</td>
<td>Voyager bus to right-hand drawer electronics: mirror, beam steering, low-mass gate</td>
<td>DB37 plug</td>
</tr>
<tr>
<td></td>
<td>J18</td>
<td>Voyager bus expansion</td>
<td>34-position ribbon cable</td>
</tr>
<tr>
<td></td>
<td>J22</td>
<td>Camera, grabber, vent solenoid, foreline solenoid control</td>
<td>12-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J23</td>
<td>Linear and flap actuator solenoid control</td>
<td>8-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J25</td>
<td>Detector 24 V, switched 24 V, polarity switching, LMG enable, vacuum gauge (to workstation)(right-hand drawer electronic controls)</td>
<td>DB25 Receptacle</td>
</tr>
<tr>
<td></td>
<td>J26</td>
<td>Linear, flap, load position sensors</td>
<td>16-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J27</td>
<td>Turbo controllers</td>
<td>DB15 Receptacle</td>
</tr>
<tr>
<td>Item</td>
<td>Name</td>
<td>Function</td>
<td>Type</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Connectors</td>
<td>J28</td>
<td>Laser control from stepper motor PCBA</td>
<td>8-position Mini-Fit</td>
</tr>
<tr>
<td>(continued)</td>
<td>J29</td>
<td>To I/O Internal laser attenuator</td>
<td>8-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J30</td>
<td>To external laser attenuator</td>
<td>12-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J31</td>
<td>Internal laser interlock</td>
<td>2-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J32</td>
<td>Interlock switches</td>
<td>2-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J34</td>
<td>Power in +5, +24, +15, –15 V</td>
<td>12-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>JU1</td>
<td>Analog-Digital ground (normally open)</td>
<td>2-position 0.1-inch header</td>
</tr>
<tr>
<td></td>
<td>JU2</td>
<td>Legacy trigger frequency (normally jumped)</td>
<td>2-position 0.1-inch header</td>
</tr>
<tr>
<td></td>
<td>JU3</td>
<td>Auto-Manual laser type select (normally 1-2)</td>
<td>3-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>JU4</td>
<td>Stepper PCB 5 V select (normally 1-2)</td>
<td>3-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>JU5</td>
<td>Stepper PCB ground select (normally 1-2)</td>
<td>3-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>JU6</td>
<td>3.3-5.0 V select U46 (normally 2-3)</td>
<td>3-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>JU7-10</td>
<td>Open (not used)</td>
<td>2-position Mini-Fit</td>
</tr>
<tr>
<td>Pots</td>
<td>R24</td>
<td>DAC 5 V reference monitor at TP9</td>
<td>Potentiometer</td>
</tr>
<tr>
<td></td>
<td>R46</td>
<td>3 Hz adjust “old laser trigger” (direct monitor at pin 3, U39)</td>
<td>Potentiometer</td>
</tr>
<tr>
<td>Test Points</td>
<td>TP1</td>
<td>External laser in</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>TP2</td>
<td>DE box trigger</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>TP3</td>
<td>TIS trigger</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>TP4</td>
<td>Internal laser in</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>TP5</td>
<td>Internal laser in, Comparator Signal</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>TP6</td>
<td>External laser in, Comparator Signal</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>TP7</td>
<td>Source DAC command</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>TP8</td>
<td>Source DAC monitor</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP9</td>
<td>5 V reference</td>
<td>Test point</td>
</tr>
<tr>
<td>Item</td>
<td>Name</td>
<td>Function</td>
<td>Type</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Test Points (continued)</td>
<td>TP10</td>
<td>Source DAC Return</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP11</td>
<td>Spare DAC monitor</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP12</td>
<td>Grid DAC command</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP13</td>
<td>Grid DAC monitor</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP14</td>
<td>Grid DAC Return</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP15</td>
<td>Spare DAC command</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP16</td>
<td>Spare DAC Return</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP17</td>
<td>+15 V</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP18</td>
<td>–15 V</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP19</td>
<td>+24 V</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP20</td>
<td>+5 V</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP21</td>
<td>Ground, DC return</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP22</td>
<td>+12 V</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP23</td>
<td>Spare 2 DAC command</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP24</td>
<td>Spare 2 DAC return</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP25</td>
<td>External laser trigger</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP26</td>
<td>N₂ laser trigger</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP27</td>
<td>+3.3 V</td>
<td>Test point</td>
</tr>
<tr>
<td></td>
<td>TP28</td>
<td>Mirror DAC monitor (DE + DE-Pro only)</td>
<td>Test point</td>
</tr>
</tbody>
</table>
MALDI Consolidated Control Board LEDs and Switches

Table 2-18 MALDI Consolidated Control Board LEDs and Switches

<table>
<thead>
<tr>
<th>LED/Switch Name</th>
<th>Position</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED D3</td>
<td>1</td>
<td>Laser opto-trigger In</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Timed-Ion Selector enable</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>TIS pulse Out</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>DE pulse Out</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>DE switch box Relay 1 On</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>DE switch box Relay 2 On</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>DE switch box Relay 3 On</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>DE switch box Relay 4 (not used)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Linear detector On</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Internal (N2) laser selected</td>
</tr>
<tr>
<td>LED D6</td>
<td>1</td>
<td>+12 V</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>+24 V</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>+15 V</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>–15 V has</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>+5 V</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Cover removed (interlock open)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Computer enabled</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Negative ion mode</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Mirror On</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Low-mass gate enable</td>
</tr>
</tbody>
</table>
Table 2-18 MALDI Consolidated Control Board LEDs and Switches (Continued)

<table>
<thead>
<tr>
<th>LED/Switch Name</th>
<th>Position</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED D11</td>
<td>1</td>
<td>Linear 1 actuator extended</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Linear 1 actuator retracted</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Linear 2 actuator retracted</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Flap Door 1 open</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Flap Door 1 closed</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Flap Door 2 open</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Flap Door 2 closed</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Sample stage at load position</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.3 V</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Mirror detector On</td>
</tr>
<tr>
<td>LED D18</td>
<td>1</td>
<td>Linear 1 solenoid On</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Linear 2 solenoid On</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Flap Door 1 solenoid On</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Flap Door 2 solenoid On</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Foreline 1 solenoid On</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Foreline 2 solenoid On</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Vent solenoid</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Camera power On</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Grabber solenoid On</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5 V stepper</td>
</tr>
</tbody>
</table>
Table 2-18 MALDI Consolidated Control Board LEDs and Switches (Continued)

<table>
<thead>
<tr>
<th>LED/Switch Name</th>
<th>Position</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch 1</td>
<td>1</td>
<td>Source turbo On (normally On)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Mirror turbo On (normally On)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Not used (spare turbo)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>old "3 Hz" DE box: Off, new: On</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>not used</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Laser trigger select (old/new)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3-5 bit addressing (3-bit, 5-bit)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Internal/External laser manual select (normally "IntLas")</td>
</tr>
</tbody>
</table>
Figure 2-30 MALDI Control Board
2.4 Electronics Only in Earlier Instruments

Overview

The electronics only in instruments with serial numbers 4153 and earlier described in this section are:

- Flight-tube (drift-tube) power supply V750061
- Pulse Generator board V750063

In addition, the earlier instruments have the following electronics:

- Cable Distribution V750003
- Control board V750015
- DC power supplies (+12 V, +24 V; Quad +5 V, ±15 V, −5.2 V)
- Laser switch board

Figure 2-31 shows the housing of these electronics.
2.4.1 Flight-Tube (Drift-Tube) Power Supply (V750061)

Overview

Voyager-DE STR instruments with serial numbers 4153 and earlier have a guide wire strung along the center axis of the flight tube to organize the stream of ions into a narrow, straight beam.

The V750061 Flight Tube Power Supply is a programmable dual-polarity power supply board (Figure 2-32) that provides a programmable potential to the wire.

![Flight (Drift)-Tube Power Supply Block Diagram](image-url)

Figure 2-32 Flight (Drift)-Tube Power Supply Block Diagram
Theory

Ions of polarity opposite to the wire potential are drawn to the center of the flight tube by their attraction to the wire. Polarity applications are summarized in the following table.

<table>
<thead>
<tr>
<th>Mode/Ions Attracted to Wire</th>
<th>Wire Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive ion</td>
<td>Negative</td>
</tr>
<tr>
<td>Negative ion</td>
<td>Positive</td>
</tr>
</tbody>
</table>

The Neg/Pos relay (controlled by J2) directs the 0 to 10 V signal from the guide wire DAC output to the power amplifier. The power amplifier amplifies the signal by a factor of 10, providing 0 to +100 V.

Connector J2 also provides a signal to activate the HV Power Enable relay. This relay has two outputs:

- **High Voltage disabled output**—Connects the guide wire to ground when high voltage is not enabled.
- **High Voltage enabled output**—Provides +12 V dc power to the two operational amplifiers when high voltage is enabled. The gain = 1 OpAmp receives +12 V directly from the relay and receives -12 V from a small DC/DC converter. The gain = 10 OpAmp receives +100 V and -100 V from a DC/DC converter powered by the same +12 V line.

The High Voltage Enable function operates with the “High Voltage Enable” on the Voyager software menu and is disabled by the Voyager hardware interlock.

See Section 5.5, Flight Tube and Mirror Chamber, for the steps to set the output to zero.

An earlier version of the Flight-Tube Power board has the same functionality and cable connections as the V750061 PCA. The earlier board has two relays and two programmable 100 V DC/DC power supplies. One relay provides High Voltage Enable and the other relay selects the output from either the Positive 100 V converter or the Negative 100 V converter. This PCA also has a potentiometer to adjust scale and can be replaced by the newer V750061 PCA.

Specifications

Power

Power specifications are:

- +24 V dc at approximately 20 mA to power the two relays
- +12 V dc at approximately 250 mA to power the two DC/DC converters and associated operational amplifiers

The guide wire is essentially a no-load device.

Input

Input impedance load presented to the DAC is approximately 10 K resistive.

Output

The guide wire receives 0.0 to −100 V dc in positive ion mode, and 0.0 to +100 V dc in negative ion mode. The output OpAmp is protected by an 100 ohm series resistor and by an internal thermal shutdown circuit. Ripple consists of approximately 5 mV peak-to-peak switching noise that can be measured with a coax cable directly connected to an oscilloscope.
Connectors and Trim Pots

Table 2-19 Connectors, Adjustments, and Tests on the Flight-Tube PCA

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectors</td>
<td>J1</td>
<td>Power Output: Horizontal 0 to –100 V Positive Ion mode and 0 to +100 V Negative Ion mode</td>
<td>BNC</td>
</tr>
<tr>
<td></td>
<td>J2</td>
<td>HV Enable, Pos/Neg Ion Polarity, +24 V relay power</td>
<td>8-pin MTA locking header, 0.1-inch spacing</td>
</tr>
<tr>
<td></td>
<td>J3</td>
<td>+12 V power for dual DC/DC converters and OpAmps</td>
<td>2-pin MTA locking header, 0.1-inch spacing</td>
</tr>
<tr>
<td></td>
<td>J4</td>
<td>Program input from DAC</td>
<td>4-pin MTA locking header, 0.1-inch spacing</td>
</tr>
<tr>
<td>Trim Pots</td>
<td>RP9</td>
<td>Zero DC offset U2 (gain = 100) OpAmp, measure with digital voltmeter on output</td>
<td>Potentiometer</td>
</tr>
<tr>
<td></td>
<td>RP8</td>
<td>Zero DC offset U1 (gain = 10) OpAmp, measure with digital voltmeter on output</td>
<td>Potentiometer</td>
</tr>
<tr>
<td></td>
<td>Ripple</td>
<td>Approximately 5 mV peak-to-peak switching noise, measure with a coax cable directly connected to an oscilloscope</td>
<td>BNC Output Connector</td>
</tr>
</tbody>
</table>
2.4.2 Pulse Generator Board (V750063)

Overview

The Pulse Generator PCA can be configured for:

- Delayed-Extraction timing
- Timed Ion Selector timing

See Table 2-20, for configurations.

In both functions, the board:

- Captures an input trigger
- Waits and counts off a pre-programmed delay
- Outputs a pulse of pre-programmed width

The circuit has 10-ns resolution and a 15-bit maximum delay (327 µs).

Theory

The circuit can be divided into the following blocks (Figure 2-33):

- 100-MHz clock
- Trigger buffer and sync
- Latches
- Counters
- Address decoder
- Drivers

![Figure 2-33 Pulse Generator Board Block Diagram](PB100843)
Chapter 2 Electronics

100-MHz Clock

The clock generates a 10-ns time base used by the counters, synchronizer, and address decoder.

Trigger Buffer

The trigger buffer takes a 3 to 12 V asynchronous pulse event, buffers it to 5 V, synchronizes it to the 100 MHz clock, then presents it as an enable signal to the two 15-bit counters.

Registers

There are three registers in the circuit:

- **Start-pulse register**—Loaded off the data bus with a 15-bit value that determines the start of the delayed output pulse. Along with the end-pulse register, this register determines the pulse delay and the pulse width.

- **End-pulse register**—Loaded off the data bus with a 15-bit value that determines the end of the delayed output pulse. Along with the start-pulse register, this register determines the pulse delay and the pulse width.

- **Configuration register**—Loaded off the data bus with a 16-bit value whose bits control logic functions and relays, such as Timed-Ion-Selector high voltage enable and control, DE box relays, and pulse generator enables.

Counters

There are two 15-bit down-counters loaded from the start- and end-count registers. These counters are pre-loaded at the same time the start- and end-count registers are loaded. When an enable signal is received from the Trigger buffer, the counters start counting down from their preset values.

When the start and end counters reach zero, the following occurs.

- **Start counter**—A latch is set high as the start of the delayed pulse.

- **End counter**—The latch is reset low as the end of the delayed pulse. The rest of the circuit is also reset and waits for the next input trigger.

Address Decoder

The address decoder decodes the address lines and the load control line, then loads the correct register, and presets the corresponding counter with the value on the data bus.

Drivers

The line drivers take the delayed pulse from the programmable logic circuit and provide enough current to drive the cabling to devices.

Types of Signals

The input signals to the pulse generator are:

- A trigger event
- Data and address lines from the Voyager bus
- Power

The output signals to the pulse generator are:

- A delayed pulse
- Configuration and control lines for relays and devices
Connectors, Headers, Jumpers, Test Points, and DIP Switches

Table 2-20 Functions of Pulse Generator Connectors, Headers, Jumpers, Test Points, and DIP Switches

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Generic Function</th>
<th>DE Function</th>
<th>TIS Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectors</td>
<td>J0</td>
<td>Trigger in</td>
<td>Laser opto</td>
<td>Laser opto</td>
<td>2-position 0.1-inch header</td>
</tr>
<tr>
<td></td>
<td>J1</td>
<td>Voyager bus</td>
<td>Voyager bus</td>
<td>Voyager bus</td>
<td>34-position ribbon</td>
</tr>
<tr>
<td></td>
<td>J2</td>
<td>Auxiliary power out</td>
<td>Auxiliary power out</td>
<td>Auxiliary power out</td>
<td>10-position 0.1-inch header</td>
</tr>
<tr>
<td></td>
<td>J3</td>
<td>+24 V in</td>
<td>+24 V in</td>
<td>+24 V in</td>
<td>3-position 0.1-inch header</td>
</tr>
<tr>
<td></td>
<td>J5</td>
<td>TIS control</td>
<td>(Not used)</td>
<td>TIS control</td>
<td>4-position 0.1-inch header</td>
</tr>
<tr>
<td></td>
<td>J6</td>
<td>Control I/O</td>
<td>Control I/O</td>
<td>Control I/O</td>
<td>Control I/O</td>
</tr>
<tr>
<td></td>
<td>J7</td>
<td>Pulse out/Control lines</td>
<td>DE Pulse</td>
<td>TIS pulse</td>
<td>7-position 0.1-inch header</td>
</tr>
<tr>
<td></td>
<td>J8</td>
<td>Trigger in</td>
<td>Laser opto</td>
<td>Laser opto</td>
<td>BNC</td>
</tr>
<tr>
<td></td>
<td>J9</td>
<td>Pulse out</td>
<td>DE Pulse</td>
<td>TIS pulse</td>
<td>BNC</td>
</tr>
<tr>
<td></td>
<td>J10</td>
<td>Control lines</td>
<td>DE box control</td>
<td>TIS control/power</td>
<td>8-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J11/JP1</td>
<td>Pulse out</td>
<td>Digitizer trigger</td>
<td>(Not used)</td>
<td>BNC</td>
</tr>
<tr>
<td></td>
<td>J12/JP2</td>
<td>Pulse out (spare)</td>
<td>Spare</td>
<td>Spare</td>
<td>BNC</td>
</tr>
<tr>
<td></td>
<td>J13</td>
<td>+24 V out (can supply the fan)</td>
<td>(Not used)</td>
<td>(Not used)</td>
<td>2-position Mini-Fit</td>
</tr>
<tr>
<td></td>
<td>J14</td>
<td>Not populated</td>
<td>Not populated</td>
<td>Not populated</td>
<td>Not populated</td>
</tr>
<tr>
<td></td>
<td>J15</td>
<td>+24 V in</td>
<td>+24 V in</td>
<td>+24 V in</td>
<td>4-position Mini-Fit</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Generic Function</th>
<th>DE Function</th>
<th>TIS Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectors (continued)</td>
<td>J17</td>
<td>Programming header</td>
<td>(Not used)</td>
<td>(Not used)</td>
<td>10-position ribbon</td>
</tr>
<tr>
<td></td>
<td>JU1*</td>
<td>Addressing options</td>
<td>Jumped 5 - 6</td>
<td>Jumped 5 - 6</td>
<td>3 × 2 0.1-inch header</td>
</tr>
<tr>
<td></td>
<td>JU2*</td>
<td>Board function DE/TIS</td>
<td>Shorted</td>
<td>Open</td>
<td>2 × 1 0.1-inch header</td>
</tr>
<tr>
<td>Switches</td>
<td>SW1*</td>
<td>Begin-pulse address</td>
<td>b0 off; b1,2,3 on</td>
<td>b0, 1, 2, 3 on</td>
<td>4-position DIP switch</td>
</tr>
<tr>
<td></td>
<td>SW2*</td>
<td>End-pulse address</td>
<td>b0,3 off; b1,2 on</td>
<td>b0,1,2 on; b3 off</td>
<td>4-position DIP switch</td>
</tr>
<tr>
<td></td>
<td>SW3*</td>
<td>Configuration address (=3)</td>
<td>b0,1 off; b2,3 on</td>
<td>b0,1 off; b2,3 on</td>
<td>4-position DIP switch</td>
</tr>
<tr>
<td>Test Points</td>
<td>TP1</td>
<td>–15 V dc</td>
<td>(Not used)</td>
<td>(Not used)</td>
<td>(Not used)</td>
</tr>
<tr>
<td></td>
<td>TP2</td>
<td>–5.2 V dc</td>
<td>(Not used)</td>
<td>(Not used)</td>
<td>(Not used)</td>
</tr>
<tr>
<td></td>
<td>TP3</td>
<td>+24 V dc</td>
<td>(Not used)</td>
<td>(Not used)</td>
<td>(Not used)</td>
</tr>
<tr>
<td></td>
<td>TP4</td>
<td>+15 V dc</td>
<td>(Not used)</td>
<td>(Not used)</td>
<td>(Not used)</td>
</tr>
<tr>
<td></td>
<td>TP5</td>
<td>+5 V dc</td>
<td>(Not used)</td>
<td>(Not used)</td>
<td>(Not used)</td>
</tr>
<tr>
<td></td>
<td>TP6</td>
<td>Ground</td>
<td>(Not used)</td>
<td>(Not used)</td>
<td>(Not used)</td>
</tr>
<tr>
<td></td>
<td>TP7</td>
<td>Delayed pulse out</td>
<td>DE trigger</td>
<td>TIS trigger</td>
<td>TTL</td>
</tr>
<tr>
<td></td>
<td>TP8</td>
<td>Trigger input</td>
<td>Laser opto-trigger</td>
<td>Laser opto-trigger</td>
<td>TTL</td>
</tr>
<tr>
<td></td>
<td>D4</td>
<td>–5.2 V dc LED</td>
<td>–5.2 V dc LED</td>
<td>–5.2 V dc LED</td>
<td>–5.2 V dc LED</td>
</tr>
<tr>
<td></td>
<td>D5</td>
<td>+5 V dc LED</td>
<td>+5 V dc LED</td>
<td>+5 V dc LED</td>
<td>+5 V dc LED</td>
</tr>
<tr>
<td></td>
<td>D7</td>
<td>+15 V dc LED</td>
<td>+15 V dc LED</td>
<td>+15 V dc LED</td>
<td>+15 V dc LED</td>
</tr>
<tr>
<td></td>
<td>D9</td>
<td>+24 V dc LED</td>
<td>+24 V dc LED</td>
<td>+24 V dc LED</td>
<td>+24 V dc LED</td>
</tr>
<tr>
<td></td>
<td>D11</td>
<td>Pulse out LED</td>
<td>Pulse out LED</td>
<td>Pulse out LED</td>
<td>Pulse out LED</td>
</tr>
</tbody>
</table>

* Configurable address and board function DE/TIS settings.
3 Before Servicing the Workstation

This chapter contains the following sections:

3.1 Voyager Laser Safety ... 3-2
 3.1.1 Overview of Laser Safety 3-2
 3.1.2 Required Customer-Provided YAG Laser Safety Measures .. 3-3
3.2 Venting the Voyager DE-STR Workstation 3-4
 3.2.1 Preparing to Vent 3-4
 3.2.2 Venting to Air .. 3-5
 3.2.3 Purging the System to N2 3-5
3.3 Powering Up After Venting 3-6
3.1 Voyager Laser Safety

3.1.1 Overview of Laser Safety

Laser Classification
The Voyager-DE™ Biospectrometry™ Workstation uses a standard nitrogen laser and an optional Nd:YAG laser. Under normal operating conditions, the instrument laser is categorized as a Class I laser. Under certain conditions during servicing, when interlocks have been circumvented, the lasers fall into the following categories and can cause permanent eye damage:

- Nitrogen—Class IIIb
- Nd:YAG—Class IV

The Voyager-DE Biospectrometry Workstation complies with Title 21, U.S. Government DHEW/BRH Performance Standards, Chapter 1, Subchapter J, Section 1040, as applicable.

Laser Safety Features
The following safety features are included on the Voyager-DE Biospectrometry Workstation:

- Cabinet is designed to prevent access to collateral laser radiation exceeding the accessible emission limits in Performance Standards for Laser Products, 21 CFR 1040.10.
- Top, front, back, and side panels have interlock switches that disable the laser when panels are opened or removed.
- Safety labels for Class I standards are affixed to the unit.

WARNING
ELECTRICAL SHOCK AND LASER HAZARD. In External Trigger mode, the nitrogen laser energy storage capacitors are charged, and the laser is ready to fire at any time. When you perform service on the laser in External Trigger mode, remove jewelry and other items that can reflect the beam into your eyes or the eyes of others. Wear laser safety goggles and protect others from exposure to the beam. Post a laser warning sign.

WARNING
ELECTRICAL SHOCK AND LASER HAZARD. When instrument covers are removed, high voltage contacts are exposed, and the laser emits ultraviolet radiation. Wear laser safety goggles and post a laser warning sign at the entrance to the laboratory when you remove covers for service.

WARNING
LASER HAZARD. Exposure to direct or reflected laser light can burn the retina and leave permanent blind spots. Never look directly into the laser beam. Remove jewelry and other items that can reflect the beam into your eyes. Wear laser safety goggles during laser alignment. Protect others from exposure to the beam. Post a laser warning sign while performing service.
Laser Safety Requirements

To ensure safe laser operation, note the following:

- The system must be installed and maintained by an Applied Biosystems Technical Representative.
- Top, front, back, and side panels must be installed during operation. When front and side panels are installed, there should be no detectable radiation present. If front or side panels are removed when the laser is operational, you may be exposed to laser emissions in excess of Class 1 rating.
- Do not remove labels or disable safety interlocks.

Additional Safety Information

Refer to the user manual provided with the laser for additional information on government and industry safety regulations.

3.1.2 Required Customer-Provided YAG Laser Safety Measures

Before servicing a system using the YAG laser, the customer is required to provide safety precautions. The YAG accessory supplied with the Voyager-DE STR is a class I laser, which is considered not capable of producing damaging radiation levels during operation. When maintenance requires an Applied Biosystems field service engineer to defeat the interlocks protection system for the instrument, the YAG laser is classified as a class IV laser. A class IV laser poses hazards to the eye and skin not only from the direct beam but in some cases also from the diffuse reflection. These lasers can be considered a fire hazard and may also produce laser-generated air contaminants and hazardous plasma radiation.

Therefore before you can perform maintenance or service on the YAG Laser while at the customer facility, the customer must:

- Provide the appropriate Laser Warning Signs. These signs shall be conspicuously displayed in a location where they will best serve to warn any and all onlookers.
- Provide the appropriate safety glasses/goggles to their employees if they are in the area while the laser is being serviced. The safety glasses/goggles must be rated for a YAG laser with a wavelength of 355 nm.
- Provide and document laser safety training to their employees on the hazards associated with a YAG laser.
- Remove all employees from the area where maintenance to the YAG laser is being performed.

In addition, all customers must be in compliance with the ANSI standard Z136.1-1993, American National Standard for the Safe Use of Lasers.
3.2 Venting the Voyager DE-STR Workstation

3.2.1 Preparing to Vent

To prepare the Voyager workstation for venting:
1. Close the Voyager software and other applications in the computer.

2. Turn off both BA1 and BA2 ion gauges from the multigauge controller.
3. On the rear panel of the instrument, turn off the Voyager STR workstation main power switch.
4. On the AC distribution board (Figure 3-1), disconnect (unplug) AC power to the following components:
 - Source turbo controller (J14)
 - Mirror (reflector) turbo controller (J13)
 - Fore (roughing) pump power (J1)

5. To prevent possible damage to the turbo pump balanced blades, allow the turbos to spin down for 5 to 10 minutes.

<table>
<thead>
<tr>
<th>Newer Systems</th>
<th>Older Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voyager Instrument Control Panel</td>
<td>Voyager control window</td>
</tr>
<tr>
<td>Voyager Data Explorer</td>
<td>GRAMS (Voyager software Version 4.51 and earlier)</td>
</tr>
<tr>
<td>Voyager Sequence Control Panel</td>
<td>NA</td>
</tr>
<tr>
<td>Instrument Hardware Controller (access from</td>
<td>NA (Only available with Voyager software Version 5.0</td>
</tr>
<tr>
<td>Windows Control Panel/Services)</td>
<td>and later)</td>
</tr>
</tbody>
</table>

Figure 3-1 AC Power Connectors.
3.2.2 Venting to Air

Allow air to flow into the chamber slowly as described in the following table. As air flows into the vacuum chamber, you hear a slight hissing indicating atmosphere is seeping into the vacuum chamber.

<table>
<thead>
<tr>
<th>Step</th>
<th>Newer Systems</th>
<th>Older Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locate the filter mounted on the vent valve of the source turbo and mirror turbo.</td>
<td>Locate the small knurled vent screw on the side of the turbo.</td>
</tr>
<tr>
<td>2</td>
<td>Lift up the lever attached to the turbo vent valve to open the valve.</td>
<td>Loosen the vent screw slowly. CAUTION. DO NOT loosen the vent screw completely. The small knob may become lost and the vent screw O-ring may become detached.</td>
</tr>
<tr>
<td>3</td>
<td>When the sound of flowing air has stopped completely, close the turbo vent valve lever.</td>
<td>When the sound of flowing air has stopped completely, re-tighten the knurled vent screw by hand. CAUTION. When tightening the knurled vent screw, DO NOT over tighten it.</td>
</tr>
</tbody>
</table>

When the system is vented, the ion detector is exposed to the atmosphere. If the detector is exposed for more than 24 hours, the following problems may occur:

- A film of water and other molecules may form on the surface of the detector. The film can cause arcs across the surface of the detector when full voltages are applied.
- The detector may absorb moisture and may swell and crack.

For systems that will be at atmosphere for more than 24 hours, purge the system to N₂. Purging to N₂ protects detector integrity as well as minimizes pump down time. Pump down time is the time needed to return the system to vacuum after venting. The length of time the system was at atmosphere determines the pump down time. To estimate pump down time, multiply the time the system was at atmosphere by three.

3.2.3 Purging the System with N₂

To purge newer systems with N₂ gas:

1. Connect the N₂ gas tank to the filter on the source turbo venting valve. Connect one end of the regulator to the vent filter using a 3/8” O.D. clear PVC tubing and connect the other end of the regulator to the nitrogen drop line.
2. Preset pressure on the regulator to 5 psig.
3. Open the valve on the N₂ gas tank.
4. Lift up the lever attached to the turbo vent valve, allowing N₂ to flow into the chamber slowly.
5. Close the turbo vent valve when the sound of flowing N₂ has stopped completely.
6. Close the gas valve on the N₂ tank.
7. Disconnect the clear PVC tubing from the filter on the turbo venting valve.
3.3 Powering Up After Venting

Before powering up the Voyager workstation after venting:

1. Close all open vent valves.
2. Reconnect and secure all vacuum connections.
3. Switch on the Voyager workstation main power.

Once the valves are closed, vacuum connectors are secure, and the Voyager workstation main power is on:

1. On the AC distribution board, connect (plug in) the fore pump to the J1 connector (Figure 3-1 on page 3-4).
2. Monitor the TC2 vacuum reading on the multigauge controller. (For information, see Section 5.7.2, Multigauge Controller.)
3. When the reading reaches below 3×10^{-1} torr, reconnect the following cables to the AC distribution board (Figure 3-1 on page 3-4):
 - The source turbo controller (J14)
 - The mirror turbo controller (J13)
4. Observe the turbo status indicator lights on the Voyager workstation top panel LED display or the D12 LEDs on the MALDI control board. Both of the status indicator lights on the turbos should display the following sequence of colors:
 - Yellow for about 1 minute—Indicating initial startup
 - Yellow and green briefly—Indicating turbo reached 80% of full speed
 - Green only—Indicating the turbo is at normal operating condition (56 krpm)
 - Red indicates a fault.

5. Wait an additional 10 to 30 minutes.

After the turbo has stabilized:

1. Using the multigauge controller, turn on the BA1 and BA2 gauges. (For information, see Section 5.7.2, Multigauge Controller.)
 Both vacuum readings should be below 8×10^{-5} torr, or you should see indications that the system is pumping down to a lower level.
2. Allow the system to pump down further to reach system operational pressures. Normally, BA1 should be below 9×10^{-7} torr. BA2, the mirror, is typically 10 times lower, 9×10^{-8} torr.

NOTE: To achieve a pressure below 9×10^{-7} torr may take the system a day or more.

3. When the system pressure readings are 9×10^{-6} torr or less, reboot the computer and launch the Voyager control panel.
4 Voyager Diagnostics Software

This chapter contains the following sections:

4.1 Overview .. 4-2
4.2 Voyager Software Compatibility 4-2
4.3 Accessing the Diagnostics Software 4-3
4.4 Diagnostics Software Features 4-5
 4.4.1 Control Pages ..4-5
 4.4.2 Status Bar .. 4-11
4.1 Overview

The Voyager 32-Bit Diagnostics software for NT platform interface (Figure 4-3) allows you to:
- Troubleshoot or isolate electrical, mechanical, and vacuum problems
- Test the system after repairing or replacing parts
- Control the hardware components when the Instrument Hardware Controller (IHC) and Instrument Control Panel (ICP) are shut down.

You can run the diagnostics software whether the instrument is operating under vacuum or at atmosphere (ATM).

4.2 Voyager Software Compatibility

Table 4-1 shows the compatibility between the various Diagnostics and Voyager Software versions and platforms.

<table>
<thead>
<tr>
<th>Diagnostic Software</th>
<th>Platform</th>
<th>Compatible Voyager Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voyager 32-bit</td>
<td>NT</td>
<td>Voyager Version 5.1 and later</td>
</tr>
<tr>
<td>Voyager 16-bit</td>
<td>NT</td>
<td>Voyager Version 4.51 through Version 5.01</td>
</tr>
<tr>
<td>Voyager 16-bit</td>
<td>Windows</td>
<td>Voyager Version 4.04 and earlier</td>
</tr>
</tbody>
</table>
4.3 Accessing the Diagnostics Software

Before Accessing

Before accessing the diagnostics software, close the ICP and shut down the IHC as follows.
1. From the Start menu, select **Settings, Control Panel**.
2. In Control Panel, double-click **Services**.
 The Services dialog box appears (Figure 4-3).

3. Highlight the Instrument Hardware Controller program and click **Stop**. Once the IHC has stopped, close this dialog box.

Accessing

To access the diagnostics software:
1. From the **Start** menu, select **Programs, Voyager**, and the appropriate Voyager diagnostics option. The Voyager Diagnostics software for NT platform option is highlighted in Figure 4-2.

![Figure 4-1 Services Dialog Box](image)

![Figure 4-2 Start/Programs/Voyager Options](image)
Chapter 4 Voyager Diagnostics Software

2. Use the View menu or click individual tabs to access the component control pages

3. To restart the IHC, you can do one of the following:
 - Manually restart through the Services dialog box
 - Reboot the computer system
 - Launch the Instrument Control Panel

Figure 4-3 Voyager 32-Bit Diagnostics Software for NT Platform Window
4.4 Diagnostics Software Features

4.4.1 Control Pages

Control pages (Figure 4-3) provide control over the instrument components. Using control pages for specific tasks is detailed in various sections in Chapter 5, Troubleshooting by Components, and in Appendix A, Isolating Components Using Direct Bus Access. Where to find information about each control page is summarized in Table 4-2.

Table 4-2 Matching Control Page with Figure and Specific Task Information

<table>
<thead>
<tr>
<th>Control Page</th>
<th>Figure</th>
<th>Section Describing Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera</td>
<td>Figure 5-28</td>
<td>Section 5.6, Computer and Video Systems</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Figure 5-3</td>
<td>Section 5.2.4, Grabber, Linear Actuators, and Valves</td>
</tr>
<tr>
<td>Laser</td>
<td>Figure 5-25</td>
<td>Section 5.4.1, Laser Firing, Repetition Rate, and Reinitialization</td>
</tr>
<tr>
<td>Voltages-Delays</td>
<td>Figure 5-19</td>
<td>Section 5.3.8, Source, Grid, and Mirror Voltages</td>
</tr>
<tr>
<td>X-Y Table</td>
<td>Figure 5-7</td>
<td>Section 5.3, Main Source Chamber</td>
</tr>
<tr>
<td>DE Switch Box</td>
<td>Figure 5-21</td>
<td>Section 5.3.10, DE Switch Box Control</td>
</tr>
<tr>
<td>Direct Bus Access</td>
<td>Figure D-1</td>
<td>Appendix D, Isolating Components Using Direct Bus Access</td>
</tr>
</tbody>
</table>
Table 4-3 summarizes the functions of each control page. To find the control page and troubleshooting sections applicable to a specific workstation component, refer to Table 5-1, Matching Components with Control Page and Troubleshooting Information.

Table 4-3 Summary of Diagnostics Software Control Pages

<table>
<thead>
<tr>
<th>Fields and Actions</th>
<th>Status Indicators</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera Control Page—Powers-on and powers-off the camera</td>
<td>None</td>
<td>By default, the Camera control page appears and powers on the camera and video lamps when you start the Voyager diagnostics software for NT platform.</td>
</tr>
<tr>
<td>Camera Off/On</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Control Page—Opens and closes the valves, extends and retracts the linear actuators, turns the grabber on and off, runs single or multiple load/eject cycles, and restarts faulted vacuum gauges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valves Close/Open: Flap Door #1, 2 Foreline Valve #1, 2 Vent valve</td>
<td>Flap Door #1 Closed/Open Flap Door #2 Open</td>
<td>Allows you to manually open and close the doors and valves to remove a stuck sample plate. Note: You can activate the flap doors and linear actuators only when the air compressor is running. The air compressor runs only when the sample stage is in the load region.</td>
</tr>
<tr>
<td>Actuators Retract/Extend: Linear #1 Linear #2</td>
<td>Linear #1 Retracted/Extended Linear #2 Retracted</td>
<td></td>
</tr>
<tr>
<td>Grabber Off/On</td>
<td></td>
<td>Under normal operating conditions, the grabber powers on just before the Linear 1 actuator starts to extend or retract (if ejecting), and it powers off just after the Linear 1 actuator has fully retracted.</td>
</tr>
</tbody>
</table>

(continued)
Mechanical Control Page (continued)

<table>
<thead>
<tr>
<th>Fields and Actions</th>
<th>Status Indicators</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Eject Cycle:</td>
<td>Load Eject Cycle</td>
<td>You can abort load/eject operations while they are executing, but doing so could place the system in an unsafe state. You can return the system to a safe state by clicking the appropriate radio buttons to open or close the affected components—flap doors, foreline valves, and linear actuators. When the instrument is operating at atmosphere, you can force the diagnostics software to ignore all vacuum gauge faults and finish load/eject operations. CAUTION: Using this option to ignore and override vacuum gauge faults when the system is operating under vacuum could damage the ion gauges, O-ring seals, and vacuum pumps.</td>
</tr>
<tr>
<td>Single iteration</td>
<td>current operation</td>
<td></td>
</tr>
<tr>
<td>Multiple iterations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ignore vacuum faults</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restart faulted vacuum gauges</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laser Control Page—Sets the laser repetition rate, re-initializes the internal and external (if installed) laser, and adjusts the attenuator

<table>
<thead>
<tr>
<th>Fields and Actions</th>
<th>Status Indicators</th>
<th>Comment</th>
</tr>
</thead>
</table>
| Fire laser | NA | You can adjust the laser repetition rate only if the system contains these optimization components:
 - Voyager V5.1 and later software
 - Consolidated control board (V750082 and V750102-001, V750102-002, V750102-003) with firmware (V960005rD and D/V960006rD) installed
 - Fast DE switch box (V725125)
 - 48-bit I/O control board (V750033) configured for 5-bit addressing
 NOTE: Currently, regardless of the laser optimization components, the Voyager laser does not support repetition rates greater than 20 Hz. Setting the repetition rate to a value ≥ 20 Hz causes the laser to cease firing after it emits the first pulse. |
| Desired repetition rate | NA | |
| Laser type, re-initialize | NA | NA |
Table 4-3 Summary of Diagnostics Software Control Pages (Continued)

<table>
<thead>
<tr>
<th>Fields and Actions</th>
<th>Status Indicators</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Control Page (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam attenuation</td>
<td>Current beam attenuation</td>
<td>NA</td>
</tr>
<tr>
<td>Home beam attenuator</td>
<td>Limit switch at home</td>
<td>NA</td>
</tr>
</tbody>
</table>

Voltages and Delays Control Page—Sets all voltages and delay times in linear and reflector modes

NOTE: After changing any of the settings on this control page, you must apply them before they can take effect. To do so, click [APPLY ALL (Ramp Voltages/Set Delays)]. If you leave the Voltage and Delays control page without applying the changes, you lose the changes. The values revert to the last applied settings.

<table>
<thead>
<tr>
<th>Modes of operation: Linear, Reflector</th>
<th>NA</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired Voltages: Source Grid Mirror Guide Wire Ramp voltages Reset all</td>
<td>Actual voltages: Source Grid Mirror Guide Wire Ramping status</td>
<td>If you set and apply voltage for the source, grid, mirror, or guide wire without enabling high voltage, the diagnostics software programs only the corresponding DACs. You can verify these output voltages with a voltmeter. (DAC voltages are shown in Table D-2 on page D-8.) To detect output voltages at the test points of the corresponding components, you must also enable and apply high-voltage.</td>
</tr>
<tr>
<td>Delays: Delayed Extraction Enable, Start delay time Low Mass Gate Enable, Start delay time Timed Ion Selector Enable, Start delay time, End delay time Set delays Reset all</td>
<td>NA</td>
<td>By pressing [APPLY ALL (Ramp Voltages/Set Delays)], you set the delays specified for Delayed Extraction, Low Mass Gate, and Timed Ion Selector only when you have also enabled them. (It does not affect delays associated with ramping component voltages.)</td>
</tr>
</tbody>
</table>

(continued)
Table 4-3 Summary of Diagnostics Software Control Pages (Continued)

<table>
<thead>
<tr>
<th>Fields and Actions</th>
<th>Status Indicators</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-Y Table Control Page—Moves the sample stage, resets home and load positions**
Before you can access the functions on this control page, you must click [Home] to move the sample stage to its home position (0,0). This initializes the diagnostics software controls, enabling the software to calculate all other positions, including load position.**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample stage X, Y position: scroll bar desired position (counts or microns)</td>
<td>Current position</td>
<td>One step equals 3.175 µm. You can use either unit and switch back and forth between them. The diagnostics software performs the necessary conversions automatically. The micron is used in the NT Registry editor.</td>
</tr>
<tr>
<td>Move to: desired home load</td>
<td>Limit switches: home load</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: The SET Load Position button on the X-Y Table control page initiates a data write to the Registry file. The next time it is accessed, the Voyager Instrument Control Panel reads the new X,Y coordinates from the Registry file to determine the sample stage load position. Record the old coordinates in case you need to revert to them.</td>
</tr>
<tr>
<td>Set load position</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>DE Switch Box Control—Checks the control wiring on the DE switch box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check control wiring test</td>
<td>Check Control Wiring test steps through expected voltage readings and instructions</td>
<td>Before you begin, assemble your voltmeter and meter probes, and access the DE switch box. This test checks the operative states of the three high-voltage kilovac relays by looking at resistance between J2 and J4 and the admittance between J3 and J2/Gnd.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE Switch Box type</td>
<td>NA</td>
<td>V725059 Three-connector, high-voltage switch box in Voyager-DE STR workstation with serial numbers 4147 and earlier V725115 Four-connector, high-voltage switch box in systems with serial numbers 4148 through 4160 V725125 Four-connector fast DE switch box in systems with serial numbers 4161 and later</td>
</tr>
</tbody>
</table>

(continued)
Direct Bus Access Control Page—

 Writes data directly to the various DACs, pulse generators, and ion source pulsar control register. For information, see Appendix D, Isolating Components Using Direct Bus Access. You cannot enable high-voltage or the Low Mass Gate using direct bus access. With direct bus access, you can only set the output voltage at the DACs and the Low Mass Gate value.

 Before you write data to any component, make sure you have appropriately connected or disconnected the high-voltage lines and connected meter probes or voltmeters to the appropriate DACs.

 WARNING. ELECTRICAL SHOCK HAZARD. Safe operating procedures and proper use of equipment are the responsibility of the authorized and qualified service person. Precautions must be taken to protect against possible serious and/or fatal bodily injury.

<table>
<thead>
<tr>
<th>Fields and Actions</th>
<th>Status Indicators</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write address directly to the data bus for the:</td>
<td>NA</td>
<td>Set value as decimal, hexadecimal, or binary</td>
</tr>
<tr>
<td>Source DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mirror DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam guide DAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control register</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMG delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIS delay</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Use the Diagnostics Software window status bar (expanded drawing shown in Figure 4-4) to check the items described in Table 4-4.

Figure 4-4 System Status Bar (Shown in Two Parts for Clarity)

Table 4-4 Diagnostics Software Status Bar Indicators

<table>
<thead>
<tr>
<th>Component</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Voltage</td>
<td>Indicates whether the high voltage is ON or OFF</td>
</tr>
<tr>
<td>Interlock</td>
<td>Indicates if the Voyager workstation covers (top, front, side, and rear panels) are locked in place. When the covers are securely in place, the interlock LED remains lit. If the interlocks are breached during normal operation, the system automatically disables the lasers and high-voltage supplies. For example, if the panels are off or ajar, the lasers, high-voltages, and the interlock and high-voltage LEDs remain off until the panels are secured. To operate the system with the panels removed during servicing, you can bypass the interlocks.</td>
</tr>
<tr>
<td>X</td>
<td>Displays the current X coordinate position of the sample stage</td>
</tr>
<tr>
<td>Y</td>
<td>Displays the current Y coordinate position of the sample stage</td>
</tr>
<tr>
<td>XY Status</td>
<td>Indicates whether the sample stage is currently in the load, home, or other (None) position</td>
</tr>
<tr>
<td>Laser</td>
<td>Indicates whether the laser is ON or OFF</td>
</tr>
<tr>
<td>Src Pres</td>
<td>(BA1) Displays the current pressure (in torr) in the main source chamber</td>
</tr>
<tr>
<td>Mir Pres</td>
<td>(BA2) Displays the current pressure (in torr) in the reflector mirror chamber</td>
</tr>
<tr>
<td>Smp Pres</td>
<td>(TC2) Displays the current pressure (in torr) in the sample-loading chamber</td>
</tr>
</tbody>
</table>
5 Troubleshooting by Components

This chapter contains the following sections:

5.1 Troubleshooting Overview .. 5-2
5.2 Sample Loading Chamber ... 5-7
 5.2.1 Vacuum System Interaction 5-7
 5.2.2 Internal Interlocks Operation 5-9
 5.2.3 Camera ... 5-11
 5.2.4 Grabber, Linear Actuators, and Valves 5-11
 5.2.5 Load/Eject Cycles .. 5-13
 5.2.6 Vacuum Faults .. 5-15
 5.2.7 Mechanical Control Page Errors and Warnings 5-16
5.3 Main Source Chamber ... 5-18
 5.3.1 Source Clips .. 5-23
 5.3.2 Source Pedestal .. 5-24
 5.3.3 Stepper Motor Feedthroughs 5-26
 5.3.4 Sample Plate and Grid Voltage 5-30
 5.3.5 Internal High-Voltage Cable 5-30
 5.3.6 Operation Mode ... 5-31
 5.3.7 Delayed-Extraction Ion Source 5-32
 5.3.8 Source, Grid, and Mirror Voltages 5-33
 5.3.9 Delayed Extraction, Low-Mass Gate and
 Timed Ion Selector Delay Times 5-35
 5.3.10 DE Switch Box Control 5-36
5.4 Laser System .. 5-38
 5.4.1 Laser Firing, Repetition Rate, and
 Reinitialization ... 5-38
 5.4.2 Laser Attenuation ... 5-40
5.5 Flight Tube and Mirror Chamber 5-42
 5.5.1 Timed Ion Selector .. 5-42
 5.5.2 Flight-Tube (Drift-tube) Power Supply 5-43
5.6 Computer and Video Systems 5-43
5.7 Vacuum System .. 5-44
 5.7.1 Vacuum Gauges and Pumps 5-44
 5.7.2 Multigauge Controller 5-45
 5.7.3 Multigauge Controller, Computer, and
 Workstation Interaction 5-47
5.1 Troubleshooting Overview

This manual describes troubleshooting using:

- The Voyager Diagnostic software, introduced in Section 4.4.1, Control Pages, and detailed in various sections in Chapter 5, Troubleshooting by Components
- The procedures in Chapter 5, Troubleshooting by Components
- The tables in Chapter 6, Troubleshooting by Symptoms

These methods are complimentary. For example, you may view the Diagnostic software control pages to determine which component is experiencing a problem, then turn to the appropriate section in Chapter 5, Troubleshooting by Components. In other cases, you may look up a symptom in Chapter 6, Troubleshooting by Symptoms, and use the diagnostics software to verify or correct the problem, referring to Chapter 5, Troubleshooting by Components for information on the appropriate control pages for servicing a specific component.

To find the control page and troubleshooting sections applicable to a specific workstation component, refer to Table 5-1.

Table 5-1 Matching Components with Control Page and Troubleshooting Information

<table>
<thead>
<tr>
<th>Component or Parameter</th>
<th>Task: Control Page</th>
<th>Troubleshooting Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA1, BA2, TC2</td>
<td>Observe status: Diagnostics Software Window Status bar: BA1, Srce Pres BA2, Mir Pres TC2, Smp Pres</td>
<td>Section 5.2.6, Vacuum Faults Section 5.7.1, Vacuum Gauges and Pumps Section 5.7.2, Multigauge Controller Section 6.1.5, Vacuum System Section 6.2, Multigauge Controller Common Error Codes</td>
</tr>
<tr>
<td>Beam attenuation</td>
<td>Set laser attenuation: Laser</td>
<td>Section 5.4.1, Laser Firing, Repetition Rate, and Reinitialization Section 5.4.2, Laser Attenuation Section 6.1.1, Spectral Problems</td>
</tr>
<tr>
<td>Beam guide wire DAC</td>
<td>Set output voltage: Direct Bus Access (Appendix D,)</td>
<td>NA</td>
</tr>
<tr>
<td>Beam-steering plates and voltage connections</td>
<td>Set/observe values: Voltages-Delays (source)</td>
<td>Section 5.3.8, Source, Grid, and Mirror Voltages</td>
</tr>
<tr>
<td>Camera</td>
<td>Turn camera off/on: Camera</td>
<td>Section 5.6, Computer and Video Systems</td>
</tr>
</tbody>
</table>
Table 5-1 Matching Components with Control Page and Troubleshooting Information

<table>
<thead>
<tr>
<th>Component or Parameter</th>
<th>Task: Control Page</th>
<th>Troubleshooting Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Register</td>
<td>Set values: Direct Bus Access (Appendix D,)</td>
<td>NA</td>
</tr>
<tr>
<td>(high-frequency counter and ion source pulsar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delayed-extraction</td>
<td>Enable: Voltages-Delays</td>
<td>Section 5.3.7, Delayed-Extraction Ion Source</td>
</tr>
<tr>
<td></td>
<td>Set start delay: Voltages-Delays, Direct Bus Access</td>
<td>Section 5.3.10, DE Switch Box Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 6.1.1, Spectral Problems</td>
</tr>
<tr>
<td>DE switch box</td>
<td>Test voltages: DE Switch Box</td>
<td>Section 5.3.7, Delayed-Extraction Ion Source</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 6.1.1, Spectral Problems</td>
</tr>
<tr>
<td>Einzel lens assembly</td>
<td>Set/observe values: Voltages-Delays (source)</td>
<td>Section 5.3.8, Source, Grid, and Mirror Voltages</td>
</tr>
<tr>
<td>and voltage connection</td>
<td></td>
<td>Section 6.1.1, Spectral Problems</td>
</tr>
<tr>
<td>Feedthroughs</td>
<td>Observe coordinates/status: Window Status bar X; Y; X-Y Status</td>
<td>Section 5.3.3, Stepper Motor Feedthroughs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 6.1.2, Sample Loading and Main Source Chamber</td>
</tr>
<tr>
<td>Flap Doors #1 and #2</td>
<td>Close/open, observe status: Mechanical</td>
<td>Section 5.1, Troubleshooting Overview</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 5.7.1, Vacuum Gauges and Pumps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 6.1.2, Sample Loading and Main Source Chamber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 6.1.5, Vacuum System</td>
</tr>
<tr>
<td>Foreline Valve #1</td>
<td>Close/open: Mechanical</td>
<td>Section 5.2.2, Internal Interlocks Operation</td>
</tr>
<tr>
<td>and #2</td>
<td></td>
<td>Section 5.2.5, Load/Eject Cycles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 5.2.7, Mechanical Control Page Errors and Warnings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 6.1.5, Vacuum System</td>
</tr>
<tr>
<td>Grabber</td>
<td>Turn grabber off/on: Mechanical</td>
<td>Section 5.2.2, Internal Interlocks Operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 5.2.4, Grabber, Linear Actuators, and Valves</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 5.2.5, Load/Eject Cycles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 5.3.2, Source Pedestal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 5.3.5, Internal High-Voltage Cable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 6.1.2, Sample Loading and Main Source Chamber</td>
</tr>
</tbody>
</table>
Chapter 5 Troubleshooting by Components

Table 5-1 Matching Components with Control Page and Troubleshooting Information

<table>
<thead>
<tr>
<th>Component or Parameter</th>
<th>Task: Control Page</th>
<th>Troubleshooting Section</th>
</tr>
</thead>
</table>
| Grid DAC | **Set output voltage:** Direct Bus Access | **Section 5.3.8, Source, Grid, and Mirror Voltages**
Section 5.3.10, DE Switch Box Control |
| Grid Voltage | **Set values:** Voltages-Delays
Test high voltages: DE Switch Box | **Section 5.3.8, Source, Grid, and Mirror Voltages**
Section 5.3.10, DE Switch Box Control |
| Guide wire voltage | **Set values:** Voltages-Delays
Test high voltages: DE Switch Box | NA |
| High voltages | **Observe status**
Diagnostics Software Window
Status bar: High Voltage
Enable: Voltages-Delays
Test: DE Switch Box | **Section 5.3.4**
Section 5.3.5
Section 5.3.7
Section 5.3.8
Section 5.3.10
Section 5.5.1
Section 6.1.1
Section 6.1.4 |
| Home position | **Home sample stage:** X-Y Table | see X and Y feedthroughs |
| Laser | **Observe status**
Diagnostics Software Window
Status bar: Laser
Fire, set repetition rate, attenuation, and laser type: Laser | **Section 5.4**
Section 6.1.1
Section 6.1.3 |
| Limit switches, microswitches | **Observe status:** Mechanical | **Section 5.2.4**
Section 5.3
Section 5.3.3
Section 6.1.2
Section 6.1.3 |
| Linear actuators | **Retract/extend:** Mechanical | **Section 5.2**
Section 5.2.1
Section 5.2.4
Section 5.3
Section 5.3.2
Section 6.1.2
Section 6.1.5 |
| Linear mode | **Set mode:** Voltages-Delays | **Section 5.3.7**
Section 5.3.8
Section 6.1.1 |
Table 5-1 Matching Components with Control Page and Troubleshooting Information

<table>
<thead>
<tr>
<th>Component or Parameter</th>
<th>Task: Control Page</th>
<th>Troubleshooting Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load position</td>
<td>Set coordinates: move sample stage: X-Y Table</td>
<td>see X and Y feedthroughs</td>
</tr>
<tr>
<td>Low-Mass Gate</td>
<td>Enable: Voltages-Delays
 Set start delay: Voltages-Delays, Direct Bus Access</td>
<td>Section 5.3.8
 Section 5.3.9</td>
</tr>
<tr>
<td>Mirror DAC, voltage</td>
<td>DAC
 Set output voltage: Direct Bus Access
 Voltage
 Set values: Voltages-Delays
 Test high voltages: DE Switch Box</td>
<td>Section 5.3.6
 Section 5.3.8</td>
</tr>
<tr>
<td>Polarity (Positive, negative)</td>
<td>Set: Voltages-Delays</td>
<td>Section 5.3.8
 Section 6.1.1</td>
</tr>
<tr>
<td>Reflector mode</td>
<td>Set mode: Voltages-Delays</td>
<td>Section 5.3.6
 Section 6.1.1</td>
</tr>
<tr>
<td>Sample loading and ejecting single or multiple iteration cycles</td>
<td>Initiate load/eject cycles: Mechanical</td>
<td>Section 5.2.4
 Section 5.2.5</td>
</tr>
<tr>
<td>Source DAC, voltage</td>
<td>DAC.
 Set output voltage: Direct Bus Access
 Voltage.
 Set values: Voltages-Delays
 Test high voltages: DE Switch Box</td>
<td>Section 5.3.7
 Section 5.3.8
 Section 6.1.1</td>
</tr>
<tr>
<td>Sample Stage X, Y table</td>
<td>Set Load position: X-Y Table
 Initiate load/eject cycles: Mechanical</td>
<td>Section 5.2.4
 Section 5.2.5
 See also X and Y feedthroughs</td>
</tr>
<tr>
<td>Timed Ion Selector</td>
<td>Enable: Voltages-Delays
 Set start and end delay: Voltages-Delays, Direct Bus Access</td>
<td>Section 5.3.8
 Section 5.3.9
 Section 5.5.1</td>
</tr>
<tr>
<td>Variable grid</td>
<td></td>
<td>Section 5.3.4
 Section 5.3.5
 Section 5.3.8
 Section 5.3.10</td>
</tr>
</tbody>
</table>
The multigauge controller in the Voyager system monitors the vacuum system thermocouple (TC2) and Bayard-Alpert gauges (BA1 and BA2).

Additional Resources

In addition to this manual and the Voyager Diagnostics Software, you can access information in two databases:

- **The Voyager (MALDI) Product Support web site**—Provides standard information such as Service Bulletins, Service Notes, and support contact information.

- **The Voyager (MALDI) knowledge database**—Allows an exchange information with other service engineers.

You can review the web site and the knowledge database 24 hours/day, 7 days a week. Each database is fully text searchable and is individually replicated on Lotus Notes. You can also call on the Regional Specialist, the Field Service Technical Specialist, and the Product Support Specialist. For information, see Appendix A, Technical Support and Training.
5.2 Sample Loading Chamber

When loading a sample plate, the sample plate is transported from the outside holder, into the sample loading chamber, then into the main source chamber through vacuum chambers at various pressures. The sample loading chamber (Figure 5-1) transports the sample plate between these areas using linear actuators, flap door actuators, and stepper motors.

![Figure 5-1 Voyager-DE STR Workstation Sample Loading Chamber](image)

5.2.1 Vacuum System Interaction

The actuators operate with a minimum of 15 PSI (1.03 bar). An integrated compressor supplies pneumatic energy to:

- Open and close the flap doors
- Extend and retract the linear actuators

NOTE: You can activate the flap doors and linear actuators only when the air compressor is running. The air compressor runs only when the sample stage is in the load region.

Because the linear and flap door actuators are pneumatically controlled, the performance of the sample loading chamber may be affected by problems in the vacuum system (Figure 5-2, on page 5-8).
Figure 5-2 Sample Loading System and Typical Vacuum Pressures
5.2.2 Internal Interlocks Operation

Under normal operating conditions, procedures that require you to open and close any of the various valves, move the actuators, or power off the grabber can compromise the system’s internal interlocks and damage the instrument, unless prerequisites specific to the operation are first met. Before performing such operations, know their prerequisites and the possible consequences of noncompliance. Table 5-2, “Internal Interlock Hazard Control,” on page 3-9 lists these operations and their prerequisites. When using the diagnostics software to control the component, failure to meet the prerequisites generates an error or a warning. An error is the result of a severe hazard and forces the operation to abort. A warning allows the option of continuing the operation with risk of damaging the instrument.

Table 5-2 Internal Interlock Hazard Control

<table>
<thead>
<tr>
<th>To perform this operation</th>
<th>Do this first</th>
<th>Otherwise this occurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flap Door 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Flap Door 1</td>
<td>When under vacuum:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Close Flap Door 2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Close the vent valve.</td>
<td>Warning</td>
</tr>
<tr>
<td>Close Flap Door 1</td>
<td>Retract Linear 1 actuator.</td>
<td>Error</td>
</tr>
<tr>
<td>Flap Door 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Flap Door 2</td>
<td>When under vacuum:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Close Flap Door 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Close Foreline valve 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Open the vent valve.</td>
<td>Warning</td>
</tr>
<tr>
<td>Close Flap Door 2</td>
<td>Retract Linear 2 actuator.</td>
<td>Error</td>
</tr>
<tr>
<td>Foreline 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Foreline 1</td>
<td>When under vacuum:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Close Flap Door 2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Close the vent valve.</td>
<td>Error</td>
</tr>
</tbody>
</table>
Table 5-2 Internal Interlock Hazard Control (Continued)

<table>
<thead>
<tr>
<th>To perform this operation ...</th>
<th>Do this first ...</th>
<th>Otherwise this occurs ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreline 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Foreline 2</td>
<td>When under vacuum, close Foreline valve 1. OR 1. Close the vent value and Flap Door 2 2. Open Foreline valve 1 3. Wait until TC2 reads less than 8×10^{-2} torr*</td>
<td>Warning</td>
</tr>
<tr>
<td>CAUTION: After you vent the sample-loading chamber, close the vent valve. Open Foreline valve 1. Wait to open Foreline valve 2 until TC2 reads less than 8×10^{-2} torr. If you open Foreline valve 2 before the foreline pump has reestablished a vacuum in the sample-loading chamber, you create a pressure burst that impacts the back of the turbo pumps. The burst may shut down the ion gauges (BA1 and BA2). You can restart the ion gauges after approximately 10 seconds. However, the vacuum system takes some time to stabilize.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vent valve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open the vent valve</td>
<td>Close Flap Door 1. Close Foreline Valve 1.</td>
<td>Error</td>
</tr>
<tr>
<td>Close the vent valve</td>
<td>Close Flap Door 2.</td>
<td>Warning</td>
</tr>
<tr>
<td>Linear 1 actuator</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Extend Linear 1 actuator | When under vacuum:
 • Open Flap Door 1.
 • Retract Linear 2 actuator.
 • Have the sample stage in Load position.
 In addition:
 • Close Flap Door 2.
 • Close the vent valve. | Error |
| | No error message occurs if these conditions are not met, but controls are disabled. | |
5.2.3 Camera

The camera enables you to see on the external monitor the sample spot and location where the laser is striking. The Diagnostics Software Camera control page (Section 5.6, Computer and Video Systems) shows the status of the camera.

5.2.4 Grabber, Linear Actuators, and Valves

Use the Diagnostics Software Mechanical control page (Figure 5-3) to manually control the valves, linear actuators, grabber, and load/eject cycles.

<table>
<thead>
<tr>
<th>To perform this operation ...</th>
<th>Do this first ...</th>
<th>Otherwise this occurs ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retract Linear 1 actuator</td>
<td>When vented, open Flap Door 1. When under vacuum: - Open Flap Door 1. - Close Flap Door 2. - Close the vent valve.</td>
<td>Error</td>
</tr>
<tr>
<td>Linear 2 actuator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extend Linear 2 actuator</td>
<td>Retract Linear 1 actuator. Open Flap Door 2.</td>
<td>Error</td>
</tr>
<tr>
<td>Retract Linear 2 actuator</td>
<td>Open Flap Door 2.</td>
<td>Error</td>
</tr>
<tr>
<td>Grabber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grabber off</td>
<td>Move the sample stage to Load position AND retract the Linear 1 actuator.</td>
<td>Warning</td>
</tr>
</tbody>
</table>

Table 5-2 Internal Interlock Hazard Control (Continued)
Opening and Closing Doors and Valves
You may need to manually open and close the doors and valves (in conjunction with the actuators and grabber) to remove a sample plate lodged in the main source chamber. To do so, click the **Open** or **Close** radio button of the respective valve. Observe the “Do This First” conditions in Table 5-2, “Internal Interlock Hazard Control,” on page 3-9.

Extending and Retracting Linear Actuators
To extend or retract a linear actuator, click the **Retract** or **Extend** radio button of the particular actuator. Observe the perquisites listed in Table 5-2, “Internal Interlock Hazard Control,” on page 5-9.

The check boxes under Limit Switches indicate when the linear actuators have fully retracted or extended.

Powering the Grabber On and Off
To turn the magnetic grabber (Figure 5-4) on or off, click the **ON** or **OFF** radio button. Remember that:

- The magnetic grabber is connected to the end of the Linear 1 actuator. The grabber attaches to the handle end of the sample plate to transport it into and out of the main source chamber. (If the sample plate is inserted backward, the grabber has no suitable surface to magnetize and cannot eject the plate.)
- Under normal operating conditions, the grabber powers on just before the Linear 1 actuator starts to extend or retract (if ejecting), and it powers off just after the Linear 1 actuator has fully retracted.
- If the Linear 1 actuator is extended, the grabber remains powered on and the sample stage is in any position other than Load.
5.2.5 Load/Eject Cycles

After you replace or repair parts in the main source chamber and while the main source chamber is dismantled, you may need to verify that all mechanical parts involved in loading and ejecting sample plates are aligned and operating properly.

Using the Diagnostics Software Mechanical Control page, you can perform single load and single eject cycles to fine tune alignment. To test the alignment under simulated working conditions, you can set up multiple, dual load/eject cycles that run automatically and consecutively.

For both single cycles and multiple dual-cycles, you can:

- Monitor the progress of operations as they execute
- Abort operations at any point during execution
- Force the diagnostics software to ignore vacuum faults when the system is operating at atmosphere
- Run load/eject cycles without moving the sample stage

Keeping the Sample Stage Stationary During Load/Eject Cycles

You can override the normal sequence of load/eject cycles and keep the sample stage stationary when you need to test the pneumatics of the linear actuators and flap doors or to test the grabber. To do so:

1. If you haven’t already done so, open the X-Y Table control page and move the sample stage to Load position.
2. Return to the Mechanical control page, and check Do Not Move X-Y Stage From Load Position.
3. Start a single- or multiple-iteration load/eject cycle.

The diagnostics software performs the usual sequence of steps for the specified operation, but without moving the sample stage.
Chapter 5 Troubleshooting by Components

Initiating Load/Eject Cycles

To start a single load cycle, click Initiate LOAD Cycle. To start a single eject cycle, click Initiate EJECT Cycle.

To set up multiple load/eject cycles, set the number of load/eject cycles you want to run in Total Number of Complete Load/Eject Cycles to Run, then click Start.

Table 5-3 lists the order of operations in load and eject cycles.

Table 5-3 Order of Operations in Single Load and Eject Cycles

<table>
<thead>
<tr>
<th>Eject Cycle</th>
<th>Load Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>Operation</td>
</tr>
<tr>
<td>1</td>
<td>Open Flap Door 1</td>
</tr>
<tr>
<td>2</td>
<td>Extend Linear 1 actuator</td>
</tr>
<tr>
<td>3</td>
<td>Turn grabber on</td>
</tr>
<tr>
<td>4</td>
<td>Retract Linear 1 actuator</td>
</tr>
<tr>
<td>5</td>
<td>Turn grabber off</td>
</tr>
<tr>
<td>6</td>
<td>Close Flap Door 1</td>
</tr>
<tr>
<td>7</td>
<td>Close foreline valve 1</td>
</tr>
<tr>
<td>8</td>
<td>Open vent valve</td>
</tr>
<tr>
<td>9</td>
<td>Wait 5 seconds</td>
</tr>
<tr>
<td>10</td>
<td>Check sample loading chamber pressure</td>
</tr>
<tr>
<td>11</td>
<td>Open Flap Door 2</td>
</tr>
<tr>
<td>12</td>
<td>Extend Linear 2 actuator</td>
</tr>
<tr>
<td>13</td>
<td>Retract Linear 1 actuator</td>
</tr>
<tr>
<td>14</td>
<td>Close Flap Door 1</td>
</tr>
<tr>
<td>15</td>
<td>Check source chamber pressure</td>
</tr>
<tr>
<td>16</td>
<td>Move sample stage to default position</td>
</tr>
</tbody>
</table>

Monitoring the Progress of Load/Eject Cycles

The status field (Figure 5-5) displays which operation in the load or eject cycle is currently executing.

Figure 5-5 Load or Eject Cycle Status Display
Abort Load/Eject Cycles.
You can abort load/eject operations while they are executing, but doing so could place the system in an unsafe state. You can return the system to a safe state by clicking the appropriate radio buttons to open or close the affected components—flap doors, foreline valves, and linear actuators.

To abort the currently executing load/eject operation, click **ABORT**.

5.2.6 Vacuum Faults

When testing the system using the Diagnostics Software Mechanical control page, you develop a vacuum fault. Options for responding to vacuum faults depend on whether the system is in a load/eject cycle. If not in a load/eject cycle, and the ion gauges shut down due to a stability fault, a message is displayed that allows you to choose to restart the gauges or not.

If the system is in a load/eject cycle, during most cycle steps no message is displayed. Faults are displayed in the status bar.

However, in some cycle steps the cycle cannot progress until the vacuum pressures are below a safe threshold pressure. Under these conditions, an error condition may occur where the ion gauges shut down and a message is displayed that allows you to choose to restart the gauges or not.

If an error condition continues and the safe threshold is not attained before a Registry-specified timeout period expires, the load or eject cycle will stop. A message is displayed indicating you can recover from the error by backtracking the cycle steps. You backtrack until the instrument is back to a safe initial state.

Overriding Vacuum Faults

Checking the **IGNORE VACUUM FAULTS** check box allows the system to ignore all vacuum gauge faults and continue the load/eject cycle even if gauge errors or high pressures present. The system continues on to the next step once the safe threshold pressure is attained or the Registry-specified timeout period expires.

You should ignore vacuum faults only when the system is vented (operating at atmosphere). When vented, ion gauge (and BA2) values are irrelevant. After you’ve started to bring the system back up under vacuum, you can restart the gauges when TC2 (Smp. Pres: in the system status bar) reaches \(<8 \times 10^{-2} \) torr.

Under normal operation, when vacuum gauges TC2, BA1, or BA2 reports a fault during a load or an eject cycle, the diagnostics software:

- Turns off the ion vacuum gauges.
- Stops the operation.
- Displays a message describing the fault, and asks whether you want to restart the gauges if they are off.
- Pauses, waiting for the timeout period specified in the Registry to expire.
- Depending on your input, the software either aborts or completes the operation.

A vacuum fault occurs when the sensors detect pressure greater than the pressure specified for operation:

- **Over pressure**
 - Pressures \(>8 \times 10^{-2} \) (sample loading chamber); \(>9 \times 10^{-6} \) (main source chamber).

- **Persistent Over pressure**
 - Over pressure that persists longer than a Registry-specified timeout period (typically 120 seconds). Shuts down the ion gauges.

- **Stability fault**
 - Over pressure that far exceeds the limit. Shuts down the ion gauges.
Chapter 5 Troubleshooting by Components

- **COMM fault** Failure by the diagnostics software to communicate with the ion gauges. Generates a warning you can override.
- **Init fault** Failure by the diagnostics software to initialize the ion gauges. Generates a warning you can override.

Faulty valves and gauges and leaky seals and pumps are potential sources of vacuum faults.

When the instrument is operating at atmosphere, you can force the diagnostics software to ignore all vacuum gauge faults and finish load/eject operations.

To force the diagnostics software to ignore vacuum faults and finish load/eject operations, check the **Ignore Vacuum Faults** check box. With this option enabled, all vacuum faults are ignored, and load/eject operations automatically continue after the diagnostics software waits for the specified timeout period to expire.

CAUTION

Using this option to ignore and override vacuum gauge faults when the system is operating under vacuum could damage the ion gauges, O-ring seals, and vacuum pumps.

Resetting Faulted Vacuum Gauges

After a vacuum fault occurs, the diagnostics software turns off the vacuum gauges to protect them from damage caused by over pressurization. You can restart the BA1 and BA2 ion gauges when TC2 registers $< 8 \times 10^{-2}$ torr.

To restart the vacuum gauges, click **Restart Faulted Vacuum Gauges**.

5.2.7 Mechanical Control Page Errors and Warnings

To determine the conditions generating display of an error or warning message, review **Table 5-4**. An error is the result of a severe hazard and forces the operation to abort. A warning allows the option of continuing the operation with risk of damaging the instrument.

Table 5-4 Diagnostics Software Mechanical Control Page Warning and Error Conditions

<table>
<thead>
<tr>
<th>Action Selected in the Mechanical Control Page</th>
<th>Message Type</th>
<th>Condition Causing the Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Flap Door 1</td>
<td>Warning</td>
<td>Vent valve is Open OR Flap Door 2 is Open</td>
</tr>
<tr>
<td>Close Flap Door 1</td>
<td>Error</td>
<td>Linear 1 actuator is Extended</td>
</tr>
<tr>
<td>Open Flap Door 2</td>
<td>Warning</td>
<td>Flap Valve 1 is Open</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>Foreline Valve 1 is Open</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>Vent valve is Closed</td>
</tr>
<tr>
<td>Close Flap Door 2</td>
<td>Error</td>
<td>Linear 2 actuator is Extended</td>
</tr>
</tbody>
</table>
Table 5-4 Diagnostics Software Mechanical Control Page
Warning and Error Conditions (Continued)

<table>
<thead>
<tr>
<th>Action Selected in the Mechanical Control Page</th>
<th>Message Type</th>
<th>Condition Causing the Message</th>
</tr>
</thead>
</table>
| Extend Linear 1 actuator | Error, Error | Flap Door 1 is Closed OR Linear 2 actuator is Extended
Sample Stage is NOT at the Load Position |
| Retract Linear 1 actuator | Error | Flap Door 1 is Closed |
| Extend Linear 2 actuator | Error | Flap Valve 2 is Closed OR Linear 1 actuator is Extended |
| Retract Linear 2 actuator | Error | Flap Door 2 is Closed |
| Open Vent Valve | Error | Flap Door 1 OR Foreline Valve 1 is Open |
| Close Vent Valve | Warning | Flap Door 2 is Open |
| Open Foreline 1 | Error | Flap Door 2 OR Vent Valve is Open |
| Open Foreline 2 | Warning, Warning | Vent valve AND Foreline Valve 1 are Open
Flap Door 2 AND Foreline Valve 1 are Open |
| Close Foreline 2 | Warning, Warning | Flap Door 1 AND Vent Valve are Open
Flap Door 1 AND Flap Door 2 are Open |
| Grabber OFF | Warning | Linear 1 actuator is Extended AND the X-Y Stage is NOT at the Load Position |
5.3 Main Source Chamber

The main source chamber (Figure 5-6) has the:

- Sample stage (source pedestal and X-Y table)
- Variable-voltage grid
- Delayed-Extraction (DE) switch box
- Two 30 kV high-voltage power supplies (located in the left cabinet) and associated high-voltage cables

![Diagram of the Main Source Chamber](image)

Figure 5-6 Voyager-DE STR Ion Source Components

The source pedestal receives the sample plate from the sample loading chamber and is attached to the X-Y table. The X-Y table moves the source pedestal to the desired spot location and between the Home and Load positions. Microswitches on the X-Y table feedthroughs provides the status of the source pedestal Home and Load position.

Sample Stage (Load Position)

Use the X-Y Table control page (Figure 5-7) to recalibrate the load position of the sample stage and to move the sample stage to the load position before you open the Mechanical control page (see “Keeping the Sample Stage Stationary During Load/Eject Cycles” on page -13).
Figure 5-7 X-Y Table Control Page

Homing the Sample Stage

Before you can access the functions on this control page, you must click to move the sample stage to its Home position (0,0). This initializes the diagnostics software controls, enabling the software to calculate all other positions, including load position.

The limit switches are microswitches located on each feedthrough (Figure 5-8, on page 5-20) at the Home position. These microswitches are position-sensitive and detect when the feedthroughs are Home or are within the load region. The Home microswitches detects the 0,0 position. The Load microswitches, because of their orientation on the feedthrough arms, sense position within a range of points. This range of points is referred to as the load region. The load switch for both the X and Y position must be enabled (closed) before the air compressor will run. If only one load switch is enabled (closed), the air compressor remains off.

The limit switches (Figure 5-8) are:

- **Home** Indicates the sample stage has reached the Home position at 0,0.
- **Load** Indicates the sample stage has reached the load region (approximately 16000 counts for the X position, 8000 counts for the Y position, plus or minus 300 to 500 counts).
Figure 5-8 Sample Stage and Feedthroughs

You use the sample stage X and Y coordinate fields to adjust and reset the load position of the sample stage:

- **Current** Indicates the current location, in x, y coordinates, of the sample stage.
- **Load** Indicates the current location, in x, y coordinates, of load position.
- **Desired** Specifies the desired location, in x, y coordinates, to which to move the sample plate.
- **Units** Although the stepper motors operate in step units, Voyager software Version 5.0 and later use micron (µm) units. One step equals 3.175 µm. You can use either unit and switch back and forth between them. The diagnostics software performs the necessary conversions automatically. The micron unit of measure is used in the NT Registry editor.

NOTE: The SET Load Position button on the X-Y Table control page initiates a data write to the Registry file. The next time it is accessed, the Voyager Instrument Control Panel reads the new X,Y coordinates from the Registry file to determine the sample stage load position.

Reseting the Sample Stage Load Position

You may need to reset the load position to:

- Properly align the sample stage with the linear actuators. When the sample stage is misaligned with the linear actuator in the load position, the sample plate misses the sample stage during loading. The sample plate may jam or fall inside the main source chamber.

 To verify proper positioning of the sample stage, vent the system to atmosphere and open the main source chamber. For details, see Section 3.2, Venting the Voyager DE-STR Workstation.

- Ensure that the sensor bobbins trip the Load position microswitches to turn on the air compressor. Failure to trip these microswitches deprives the linear actuators and flap doors of adequate operating pressure (15 psi).

NOTE: Record the old coordinates in case you need to revert to them. When you click the diagnostics software overwrites the coordinates of the Load position in the system Registry file.
To reset the Load position:

1. Click Home to move the sample stage to the Home position at 0,0 and initialize the diagnostics software.
2. Click Move to Load to move the sample stage to the current Load position.
3. Use the scroll bars or the Desired Position spin controls to set the x, y coordinates of the new Load position.
4. Click Move to Desired Position to move the sample stage to the new Load position specified in Desired Position.

The value in Current Position changes to match the value in Desired Position.
5. Repeat step 3 and step 4 until moving the sample stage to Desired Position trips the microswitches and turns on the air compressor.

If you are unable to set a Load position that trips the microswitches, you may need to adjust and reset the microswitches. For details, see “Adjusting the Microswitches” on page -28.
6. Click SET Load Position to reset the Load position of the sample stage to the location specified in Current Position.

The new values display in the Load Position field.

Viewing the Troubleshooting Flowchart

The flowchart in Figure 5-9 on page 5-22 outlines a preliminary troubleshooting routine to use if you do not see peaks when acquiring a standard sample. Review the following warnings before performing troubleshooting.

WARNING

ELECTRICAL SHOCK HAZARD. Potentials in the order of 30,000 V dc are present. Safe operating procedures and proper use of equipment are the responsibility of the authorized and qualified service person. Precautions must be taken to protect against possible serious and/or fatal bodily injury.

WARNING

ELECTRICAL SHOCK AND LASER HAZARD. Exposure to direct or reflected laser light can burn the retina and leave permanent blind spots. Never look directly into the laser beam. Remove jewelry and other items that can reflect the beam into your eyes. Wear laser safety goggles during laser alignment. Protect others from exposure to the beam. Post a laser warning sign while performing the alignment.

WARNING

ELECTRICAL SHOCK AND LASER HAZARD. When instrument panels are removed, high voltage contacts are exposed, and the laser emits ultraviolet radiation. Wear laser safety goggles when you remove panels for service.
Review safety warnings on page 21 and in Safety and Compliance Information.

To be provided

see Table D-2, “Voltage Values,” on page D-8 for DAC output voltage

Figure 5-9 Source Troubleshooting Flowchart
Useful Materials

- Small flat file
- Small flat-blade screwdriver
- Long T-handle Allen wrench
- MicroFinish cloth
- Teflon-based spray lubricant with a sprayer extension tube
- 40 kV high-voltage probe
- Multimeter
- Feeler gauge
- High-voltage Y adapter (to be available in the future)
- Safety interlock tag jumper

5.3.1 Source Clips

Source clips guide the sample plate onto the sample stage. Source side clips should be smooth all the way out to their leading ends, with no burrs, bends, or dimples. If the clips are damaged, either replace them or smooth them with a small flat file and MicroFinish cloth.

If a new source clip is not available, you may be able to switch the two side clips. Switching the clips side to side allows the good, trailing edge of one clip to become the leading edge on the other side of the source. To switch clips side to side, replace Clip 1 with Clip 3. Then replace Clip 3 with Clip 1 (Figure 5-10).

![Figure 5-10 Switching Source Clips](image)

After replacing the clips, inspect all sample plates used in the system. Sample plates that have either been dropped, damaged during loading, or otherwise mishandled may develop "dimples" or dents on their edges that cause the plates to bind in the source. Repair or replace any sample plates with damaged edges.
5.3.2 Source Pedestal

Aligning the Source Pedestal

Materials: T-handle allen wrench

To align the source pedestal:

NOTE: Before aligning the pedestal, be certain that both poles of the grabber are of equal length. If not, replace the grabber.

1. With a 7/64-inch T-handle allen wrench, loosen the four 6/32 inch screws (Figure 5-11) that mount the pedestal to the XY table.

CAUTION

When servicing the pedestal, avoid contacting the grid. The grid is delicate and may be damaged.

2. On the Linear 1 actuator, use the extend orifice valve (the bleed screw closest to the source housing) to slow the extension of the grabber (Figure 5-12 on page 4-25).

The Linear actuators shown in Figure 5-12 on page 4-25 are the newer rectangular shaped actuators. Linear actuators in older systems are cylindrical.

3. Stop the magnetic grabber just 1 mm short of contacting the plate.
4. Rotate the pedestal so that the edge of the plate is the same distance from both poles of the grabber.

5. Retighten the mounting screws while verifying the source and the grabber assembly remain properly aligned.

7. Reset the Extend Orifice valve to allow for the proper extension speed of the grabber. The usual adjustment range is 1½ to 2½ turns counterclockwise from fully closed (fully clockwise) position.
5.3.3 Stepper Motor Feedthroughs

The stepper motor feedthroughs provide detection of the Home and load positions (Figure 5-14). Figure 5-15 on page 4-27 shows the feedthrough interconnects.

![Figure 5-14 Stepper Motor Feedthroughs in Load and Home Positions](image-url)
Figure 5-15 Feedthrough Interconnects
Lubricating the X and Y Feedthroughs

Useful Materials
- Silicon-or PTFE-based spray lubricant
- Lubricant extension tube with a 90° bend. The bend allows perpendicular access to the feedthrough worm gear.

A grinding noise or erratic binding when the bobbin is moving indicates the feedthroughs need lubrication. To lubricate the X and Y feedthroughs:

1. Expose the worm gear (drive screw) by moving both feedthroughs to their Home positions (fully extended). See “Homing the Sample Stage" on page 5-19.

2. With the lubricant sprayer extension tube inserted into the feedthrough worm gear slot, lubricate the worm gear along its entire length.

3. Repeatedly move the source between sample plate spot position 91 and position 10 until the grinding noise or erratic binding subsides. Also cycle repeatedly from Home to Load Position.

4. If the grinding noise or erratic binding continues, repeat lubrication or replace the feedthrough, if necessary.

Adjusting the Microswitches

The stepper motor feedthroughs (Figure 5-17 on page 4-29) have two switches:
- **Home**—Triggering the Home Position switch occurs when the linear actuators are fully extended. Due to its mounting configuration, the Home switch has very little wear and rarely needs replacement. However, if you replace a Home switch, the respective X or Y load coordinate will need to be adjusted (“Resetting the Sample Stage Load Position" on page 5-20).
- **Load**—Triggering the Load Position switch retracts the linear actuator. Check the Load Position switch as part of the preventative maintenance schedule and replace if necessary.
Occasionally, an error message is displayed during plate loading or ejection indicating that the source is not in the load position, even though the compressor is energized.

Both the 5 V logic for the load position sensing and the 24 V for the compressor relay use the same load position microswitches on the sides of the linear feedthroughs. If the switches are not adjusted to provide sufficient pressure on the switch button, a resistance (usually about 10 to 20 ohms) will occur in the switch contacts. This resistance is sufficient to drop the 5 V logic signal low enough to cause the 5 V load logic to fail, but not enough to cause the 24 V compressor control to fail. As such, the compressor runs, but the logic faults.

To adjust the load position microswitch:
1. Move the Load Switch bracket (Figure 5-17) closer to the feedthrough sensor bobbin.

CAUTION

Moving the switch too close to the bobbin may cause excessive wear and premature switch failure.

2. Adjust the Load Switch bracket such that the switch and the bobbin are centered (Figure 5-18 on page 5-29) and close enough that the switch is activated by contact with the bobbin.

If the problem persists, replace the switch.
5.3.4 Sample Plate and Grid Voltage

The ion source can be relatively easy to troubleshoot if high voltage is present at the sample plate and the grid assembly. However, measuring and verifying these voltages can be difficult because the power supplies are safety interlocked and isolated to prevent accidental exposure to potentially lethal high voltages.

You can measure source and grid voltages directly or indirectly:

- **Directly**—Vent the instrument and disable the vacuum system. Use a high-voltage probe to measure the voltages.
- **Indirectly**—Use a high-voltage Y adapter

Before optimizing the variable-voltage grid setting (Grid Voltage%), adjust laser intensity until you obtain a signal-to-noise ratio of approximately 50:1.

5.3.5 Internal High-Voltage Cable

You can test the integrity of the high-voltage (HV) cable with the system under vacuum. This process takes advantage of the Linear Actuator 1 being grounded.

In this test, you determine if the internal high-voltage cable feedthrough is maintained from the sample plate to the high-voltage connectors.

Using the 16-bit Diagnostic Software

To test the HV cable using the 16-bit diagnostics software:
1. Load the sample plate into the sample plate holder.
2. Exit Voyager Control software and manually turn off the ion gauge tubes.
3. Start the service mode software.
4. Initialize the autosampler, then move the sample plate to the load position.
5. Close Foreline Valve 1.
6. Open Flap Door 1 and extend the Linear 1 actuator. This completes the circuit.
 - As you extend the Linear 1 actuator, watch the video monitor. If you see movement of the plate, the grabber assembly is touching the plate.
7. Connect a small feeler gauge to the shaft of the Linear 1 actuator and the high-voltage feedthrough.
8. With the multimeter set for Ohms, measure resistance from the high-voltage feedthrough to the shaft of the Linear 1 actuator.
9. If open (infinite resistance is observed), the internal high-voltage connection cable is defective or dislodged. Vent the system, then replace or reconnect the cable.

Using the 32-Bit Diagnostic Software

To test the HV cable using the 32-bit diagnostics software:
1. Load the sample plate into the sample plate holder.
2. Exit Voyager Control software and manually turn off the ion gauge tubes.
3. Shut down the Instrument Hardware Controller and start the 32-bit diagnostics software. For information see Chapter 4, Voyager Diagnostics Software.

4. Select the XY tab. Initialize the autosampler by clicking Home.

5. Click Move to Load.

6. Select the Mechanical tab.

7. Close Foreline Valve 1.

8. Open Flap Door 1 and extend the Linear 1 actuator. This completes the circuit.

 As you extend the Linear 1 actuator, watch the video monitor. If you see movement of the plate, the grabber assembly is touching the plate.

9. Connect a small feeler gauge to the shaft of the Linear 1 actuator and the high-voltage feedthrough. Measure resistance (Ohm) flows from the high-voltage feedthrough to the shaft of the Linear 1 actuator.

10. If open (infinite resistance is observed), the internal high-voltage connection cable is defective or dislodged. Vent the system, then replace or reconnect the cable.

5.3.6 Operation Mode

The Voyager-DE STR workstation offers two flight path modes of operation, Linear and Reflector. When set to Linear and Reflector mode:

- **Linear** The mirror voltage is inoperative, and the Timed Ion Selector delay time ignored.
- **Reflector** All voltages and delay times apply.

To set the instrument mode using the Diagnostics Software Voltage and Delays control page,

1. click the Linear or Reflector radio button next to Mode of Operation and apply.

2. Click APPLY/ALL [Ramp Voltages / Set Delay]. If you leave the Voltage and Delays control page without applying the changes, you will lose the changes. The values revert to the last applied settings.

5.3.7 Delayed-Extraction Ion Source

To troubleshoot the ion source in Delayed-Extraction mode, do the following:

1. When the laser is not firing:
 - Verify source voltage is less than the grid voltage.
 - Verify all switch box relay LEDs are off when the system is in positive ion mode. See the schematic for appropriate LED states for other modes.

2. Fire the laser.

3. Observe the source voltage and the DE Timer switch box for pulses. If pulses are present or the source voltage is not pulsing, replace the switch box.
WARNING

ELECTRICAL SHOCK HAZARD. High-voltage contacts are exposed with front or side panels removed. Because the DE switch box uses 30 kV, disable the high voltages before servicing the DE switch box. Servicing the DE switch box when the high voltages on, severe electrical shock can result. Wear proper eye protection.

Set the system to Continuous Linear Mode and acquire a standard sample. If you still do not see peaks when acquiring a standard sample, check the following:

- **Source DAC output**—Source DAC output voltage is at expected value. Calculate the expected value by dividing the accelerating voltage by 3,000. For example, a 15,000 V accelerating voltage equals a 5 V expected reading; a 20,000 V accelerating voltage equals a 6.66 V expected reading.

- **Grid DAC output**—Grid voltage for Continuous Extraction is at expected value, 75% of DAC output. For example, for a 20,000 V accelerating voltage, 75% of the 6.66 V DAC outputs equals a trim pot 5.0 V reading.

- **30 kV High-Voltage power supply**—Current “I” trumpet is set at 3 turns counterclockwise or counterclockwise from the x stop point. Check that the polarity is correct. If the current “I” pot and polarity are set correctly and no voltage is present, replace the power supply.

- **High-voltage cable**—Connection to source pedestal is secure

- **Laser**—Laser is delivering adequate power and is positioned correctly

- **Delayed-Extraction switch box**—Switch Box is functioning properly in Delayed-Extraction and Continuous Linear mode

- **Delayed-Extraction Timer circuit board**—Output for older systems with the ECL logic board is -5.2 V. (Newer systems with TTL boards and the MALDI consolidated control board do not use -5.2 V.)
5.3.8 Source, Grid, and Mirror Voltages

Use the Diagnostics Software Voltages-Delays control page (Figure 5-19) to set system voltage parameters and timing delays.

![Figure 5-19 Voltage-Delays Control Page](image)

Applying the Settings

After changing any of the settings on this control page, you must apply them before they can take effect. To do so, click **APPLY ALL [Ramp Voltages / Set Delays]**. If you leave the Voltage and Delays control page without applying the changes, you will lose the changes. The values revert to the last applied settings.

If you set and apply voltage for the source, grid, mirror, or guide wire without enabling high-voltage, the diagnostics software programs only the corresponding DACs. You can verify these output voltages with a voltmeter. (DAC voltages are shown in Table D-2, “Voltage Values,” on page D-8.) To detect output voltages at the test points of the corresponding components, you must also enable and apply high-voltage.

By pressing **APPLY ALL [Ramp Voltages / Set Delays]**, you set the delays specified for Delayed Extraction, Low-Mass Gate, and Timed Ion Selector only when you have also enabled them. (It does not affect delays associated with ramping component voltages.)

The status field (Figure 5-20) tracks the state of the voltages.

![Figure 5-20 Voltages Status Display](image)
Setting the Voltages

The voltage options provide complete control of the high-voltage components. You can:

- Enable/disable high-voltage for all components the DACs control
- Set the voltage polarity
- Ramp each DAC to a specified voltage
- Enable and set specific delays for voltages applied to Delayed Extraction, the Low-Mass Gate, and the Timed Ion Selector

Turning the High-Voltages On and Off

To power the high-voltages on or off, click the Off or On radio button next to HV Enable and click apply.

- If you set DAC voltages without enabling HV, only the corresponding DACs output voltages are detectable with a voltmeter (DAC voltages are shown in Table D-2, “Voltage Values,” on page D-8).
- Enabling/disabling HV turns high-voltage on and off for all HV components (source, grid, mirror, and guide wire).

Setting the Voltage Polarity

To set the voltage polarity, click the Positive or Negative radio button next to Polarity, and click apply.

- Positive polarity is the instrument default setting.
- The polarity setting determines which ions (+ or −) are repelled from the sample plate and accelerated down the flight tube.

Ramping the DAC Voltages

To set DAC voltages, under Desired, increase or decrease the appropriate spin button, or enter a value in the appropriate field.

- Source 0 to 20 kV range. For the STR, usually set to 20,000.0 V. The source voltage defaults to 20000.0 when the Voltage and Delays control page opens.
 Changing this voltage automatically changes the voltage of the beam-steering plates and the Einzel lens, which receives approximately 50% of the source voltage.
 You must set and apply the source and grid voltages at the same time.

- Grid 0 to 20 kV range. Set as a percentage of the source voltage, it must be within 10 kV of the source voltage; typically about 65% to 95% of source voltage. The grid voltage defaults to 15000.0 when the Voltage and Delays control page opens.
 You must set and apply the source and grid voltages at the same time.

- Mirror 0 to 30 kV range. Reflector mode only (ignored in linear mode). The mirror voltage defaults to 22000.0 when the Voltage and Delays control page opens.
 When changing from reflector to linear mode, diagnostics software waits 5 seconds for the mirror high-voltage supply to fully discharge.

- Guide Wire Ignored in Voyager-DE STR workstation with serial numbers 4154 and later.

Resetting All Voltages and Delay Times

Click to disable all high-voltages, reset all DAC voltage values to 0.0 V, and disable all delay timing options.
5.3.9 Delayed Extraction, Low-Mass Gate and Timed Ion Selector Delay Times

Use the Diagnostics Software Voltages-Delays control page (Figure 5-19) timing delays. To enable DE, the LMG, or the TIS, click the radio button of the function you want to enable. To set delay times (defined in Table 5-5), increase or decrease the counter (start and end delay times) to set the delay.

Table 5-5 DE, LMG, and TIS Delay Times

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Clock cycle</th>
<th>Start Delay</th>
<th>End Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>10 ns</td>
<td>How long accelerating voltage is withheld after the laser fires. Values range from 10 to 32,768 ns.</td>
<td>NA</td>
</tr>
<tr>
<td>LMG</td>
<td>222-ns steps</td>
<td>How long the detector is deactivated, reducing its sensitivity to low-mass ions. Values range from 8,000 to 65,000 ns.</td>
<td>NA</td>
</tr>
<tr>
<td>TIS</td>
<td>10 ns</td>
<td>Determines when the TIS is deactivated (voltage turned off) to pass the ions of interest. Values range from 10 to 327,670 ns.</td>
<td>Determines when the TIS is reactivated (voltage applied) to deflect unwanted ions.</td>
</tr>
</tbody>
</table>

Resetting All Voltages and Delay Times

To disable all high-voltages, reset all DAC voltage values to 0.0 V, and disable all delay timing options, Click (Figure 5-19).
5.3.10 DE Switch Box Control

Use the DE Switch Box control page (Figure 5-21) to test the high voltages supplied to the source, grid, mirror, and guide wire through the DE switch box.

Checking the Control Wiring

This test checks the operative states of the three high-voltage kilovac relays by looking at resistance between J2 and J4 and the admittance between J3 and J2/Gnd.

Before you begin, assemble your voltmeter and meter probes, and access the DE switch box. Next, in the diagnostics software DE Switch Box control page, select the type of DE switch box that the system contains:

- **V725059** Three-divider, high-voltage switch box in Voyager-DE STR workstation with serial numbers 4147 and earlier
- **V725115** Four-divider, high-voltage switch box in systems with serial numbers 4148 through 4160
- **V725125** Four-divider fast DE switch box in systems with serial numbers 4161 and later

Figure 5-21 DE Switch Box Control Page

NOTE: Of the seven tests listed in the Test drop-down menu, you can run only the Check Control Wiring test at the field site. The remaining six tests are performed only at the factory.
Before running the Check Control Wiring Test:
1. Select Check Wiring Test from the Test dropdown menu.
2. Make sure you have selected the correct DE switch box type.

To run the Check Control Wiring Test:
1. As prompted (Figure 5-22), disconnect all high-voltage connections (input and output) from the DE switch box.

![Figure 5-22 Check Wiring Test Step 1 Status Message](image)

2. Click .
3. As prompted (Figure 5-23), check the diagnostics software test status area for instructions regarding connections or expected results.

![Figure 5-23 Check Wiring Test Step 2 Status Message](image)

4. Connect your meter probes to the appropriate connectors (Figure 5-24).

Both V725115 and V725125 have four connectors. Only V725125 has the 5 V pull-up control board.

![Figure 5-24 DE Switch Box Connections](image)

You can click at any time to cancel the test or start over.
5. Click Next when you are ready to continue.
6. Continue to check the test status area for expected voltage readings and instructions each time you click Next.
7. If the test results in mismatched values, run the test again.

5.4 Laser System

The nitrogen laser is replaced as a unit. You cannot replace the plasma cartridge because it must be aligned by the manufacturer.

The beam steering plates work in conjunction with the laser position. After adjusting the laser position, beam steering plates often require re-optimization.

5.4.1 Laser Firing, Repetition Rate, and Reinitialization

Use the Diagnostics Software Laser control page (Figure 5-25) to fire the internal or external (if present) laser, set its repetition rate, re-initialize it, and adjust its attenuator (intensity). You cannot use the joystick to control either the internal or the external laser. Instead, you must use the button on the control page.

WARNING

ELECTRICAL SHOCK AND LASER HAZARD. In External Trigger mode, the nitrogen laser energy storage capacitors are charged, and the laser is ready to fire at any time. When you perform service on the laser in External Trigger mode, remove jewelry and other items that can reflect the beam into your eyes or the eyes of others. Wear laser safety goggles and protect others from exposure to the beam. Post a laser warning sign.

WARNING

ELECTRICAL SHOCK AND LASER HAZARD. When instrument covers are removed, high voltage contacts are exposed, and the laser emits ultraviolet radiation. Wear laser safety goggles and post a laser warning sign at the entrance to the laboratory when you remove covers for service.

WARNING

LASER HAZARD. Exposure to direct or reflected laser light can burn the retina and leave permanent blind spots. Never look directly into the laser beam. Remove jewelry and other items that can reflect the beam into your eyes. Wear laser safety goggles during laser alignment. Protect others from exposure to the beam. Post a laser warning sign while performing service.
Firing the Laser

To fire the laser:

1. Select Laser Type by clicking the appropriate radio button.
2. If you switched lasers in step 1, click Re-Initialize (for details, see “Re-initializing the Laser” on page -40).
3. Click Home to set the attenuator at minimum intensity (0%) and initialize the diagnostics software.
4. Set the laser repetition rate and attenuator (%) as needed (for details, see “Adjusting the Attenuator Position” on page -41).

 You can adjust the laser repetition rate only if the system contains laser optimization components (for details, see “Setting the Laser Repetition Rate” on page -39).
5. Click Fire Laser.
 The laser pulses continuously.
6. To stop the laser pulsing, click Fire Laser again.

Setting the Laser Repetition Rate

You can adjust the laser repetition rate only if the system contains these optimization components:

- Voyager Version 5.1 and later software
- Consolidated control board (V750082 and V750102-001, V750102-002, V750102-003) with firmware (V960005rD and D/V960006rD) installed
- Fast DE switch box (V725125)
- 48-bit I/O control board (V750033) configured for 5-bit addressing
To set the laser repetition rate:
1. If necessary, select the laser and re-initialize it. For details, see Re-initializing the Laser.
2. Set the repetition rate by increasing or decreasing the value in Desired Repetition Rate.

NOTE: Currently, regardless of the laser optimization components, the Voyager laser does not support repetition rates greater than 20 Hz. Setting the repetition rate to a value ≥ 20 Hz causes the laser to cease firing after it emits the first pulse.

Re-initializing the Laser

After switching lasers, you need to re-initialize the newly-selected laser before use. This procedure resets the transmission path for control signaling to the newly-selected laser.

Re-initialization stops the laser from firing, homes the laser attenuator, and resets the attenuator minimum and maximum values to those stored in the Registry file.

Under Laser Type, select the laser you are switching to (Internal or External) and then click [Re-initialize].

5.4.2 Laser Attenuation

The attenuator of the internal laser is an optical disk with a 360° gradient of optical density (Figure 5-26 on page -41) positioned between the laser and the prism. The laser attenuator decreases or increases the intensity of the laser beam. As the laser is triggering, you adjust the attenuation by pressing the Control+Page Up and Control+Page Down keys with the Voyager Software Instrument Control Panel window active. This rotates the laser attenuator to set the degree of optical density at the point the laser beam enters the attenuator. The optical density determines the amount of energy that is delivered to the sample spot.

Attenuation is controlled by a stepper motor and is adjustable using the Voyager Control Panel laser step controls. For information on setting the step size, see the Voyager User Guide, Digitizer/Laser Parameters.
When the laser pulse passes through an area of greater optical density, the intensity of the laser beam is proportionally blocked and lower intensity reaches the sample. When the laser pulse passes through an area of less optical density, a smaller proportion of the laser beam is blocked. Therefore, the laser beam reaching the sample is of higher intensity (more energy) when the attenuator is set at a low density than when set to a greater density.

Adjusting the Attenuator Position

To set the attenuation using the Diagnostics Software Laser Control page:

1. Select or enter a value in the Attenuator Desired (%) Position spin box.

 Values range from 0% to 100%. A value of 0% (Home position) allows the minimum intensity laser beam to strike the sample; a value of 100% allows the maximum intensity to strike the sample.

2. Click "Apply" to rotate the attenuator to the new position, or click "Home" to rotate the attenuator to its Home position (0.0).

When the attenuator reaches its new position, the value in Current (%) changes to match the value in Desired (%). When the attenuator reaches Home position, the value in Current (%) changes to 0.0, and a check appears in the Home check box under Limit Switch.

NOTE: Home position is marked on the attenuator wheel by a piece of reflective tape. The attenuator assembly has an opto-couple device that senses the reflective tape. If the system does not detect Home position properly, check the condition of the reflective tape.
5.5 Flight Tube and Mirror Chamber

5.5.1 Timed Ion Selector

The flight tube contains a timed ion selector (TIS). The TIS is a Bradbury-Nielson gate. When the TIS is turned on, voltage (±950 V) is applied to the selector to deflect unwanted ions. At the time that corresponds to the ions of interest, voltage is turned off (Start Delay), and the ions of interest pass to the detector (Figure 1-11 on page 1-16). After the ions pass through the selector, voltage is turned on again (End Delay), to deflect ions of non-interest.

Disabling High Voltage

High voltage for the TIS is enabled at the same time and as a result of the same conditions as all other Voyager workstation high-voltage sources.

To completely disable the high voltage:

1. Turn off the High Voltage in the Voyager Instrument Control Panel (see the Voyager User Guide)
2. Remove the DB15-type input connector at P1
3. Remove the two output cables at J3 and J4

Adjusting TIS voltage

The following table shows how to adjust the TIS voltage (±950 V dc is normal) using two potentiometers (Figure 5-27).

<table>
<thead>
<tr>
<th>Pos. Term</th>
<th>Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>U2 Positive 1000V Power Supply</td>
<td>J1 J2</td>
</tr>
<tr>
<td>U1 Negative 1000V Power Supply</td>
<td>J3 J4</td>
</tr>
<tr>
<td>J5 J6</td>
<td></td>
</tr>
<tr>
<td>R3 Pos. Adj.</td>
<td>Zero to +950V Ckwise Increase</td>
</tr>
<tr>
<td>R75 Neg. Adj.</td>
<td>Zero to -950V Ckwise Increase</td>
</tr>
</tbody>
</table>

Figure 5-27 TIS PCA Assembly Diagram

This Document Contains CONFIDENTIAL Material of Applied Biosystems
For Internal Use Only - No Unauthorized Copying Permitted
5.5.2 Flight-Tube (Drift-tube) Power Supply

The DC offset adjustments requires two steps.
1. With the system in positive ion mode and with a digital voltmeter on the output, the RP9 offset potentiometer for the OpAmp with a gain of 10 is adjusted for zero volts.
2. With the system in negative ion mode, the RP8 offset potentiometer for the OpAmp with a gain of one is adjusted for zero volts.

Diagnostics Software Voltages-Delays Control Page

Use the Voltages-Delays control page ("Voltage-Delays Control Page" on page -33) to set:
- Mode of operation (Linear/Reflector). See Section 5.3.6
- High-Voltage (On/Off). See "Turning the High-Voltages On and Off" on page -34
- Mirror voltage (Desired; observe Actual). See "Setting the Voltages" on page -34
- Timing delays: Low-Mass Gate (Start Delay) and Timed Ion Selector (Start and End Delays). See Section 5.3.9

5.6 Computer and Video Systems

The camera allows you to see on the external monitor the sample spot and location where the laser is striking. The Camera control page (Figure 5-28) shows the status of the camera.

By default, the Camera control page appears and powers on the camera and video lamps when you start the Voyager diagnostics software for NT platform.

Potentiometer Function

<table>
<thead>
<tr>
<th>Potentiometer</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3</td>
<td>0 to +1000 V dc, adjustable (clockwise to increase)</td>
</tr>
<tr>
<td>R75</td>
<td>0 to –1000 V dc, adjustable (clockwise to increase)</td>
</tr>
</tbody>
</table>

Figure 5-28 Camera Control Page
5.7 Vacuum System

This section includes a description of the vacuum gauges and multigauge controller. Additional information is provided in Section 3, Before Servicing the Workstation:

- A procedure for venting the system to air
- A procedure for purging the system to N₂
- A procedure for powering up the workstation after venting

5.7.1 Vacuum Gauges and Pumps

The vacuum system (Figure 5-2 on page 5-8) uses multiple pumps to create and maintain a sealed high-vacuum environment for unobstructed ion drift.

The Voyager-DE STR has three vacuum chambers and three pumps, as described in the following table:

<table>
<thead>
<tr>
<th>Vacuum Chamber</th>
<th>Vacuum Range</th>
<th>Typical Pressure</th>
<th>Vacuum Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample loading chamber</td>
<td>Lower-than-atmospheric-pressure</td>
<td><3 x 10⁻² torr (TC2)</td>
<td>Fore pump</td>
</tr>
<tr>
<td>Main source chamber</td>
<td>High vacuum</td>
<td><5 x 10⁻⁷ torr (BA1)</td>
<td>Turbo pump 1</td>
</tr>
<tr>
<td>Mirror chamber (analyzer)</td>
<td>High vacuum</td>
<td><5 x 10⁻⁸ torr (BA2)</td>
<td>Turbo pump 2</td>
</tr>
</tbody>
</table>

The fore pump, or roughing pump, creates a lower-than-atmospheric-pressure condition before the turbo pumps start, and provides backing pressure to the turbo pumps. The fore pump can reduce pressures down to the 10⁻³ torr range.

Valves and Flap Doors

Vacuum is maintained in the main source chamber and sample loading chamber by valves and flap doors that isolate the chambers. Vacuum differential between the main source and mirror chambers is maintained by a differential pumping baffle.

Gauges

Two types of gauges monitor vacuum pressures, one thermocouple (TC2) gauge and two ion gauges (Bayard-Alpert gauges, BA1 and BA2). To monitor these gauges, you use a multigauge controller. See Section 5.7.2, Multigauge Controller.

The following table summarizes the gauges and corresponding measurement ranges:
5.7.2 Multigauge Controller

The multigauge controller in the Voyager system monitors the vacuum system thermocouple (TC2) and Bayard-Alpert gauges (BA1 and BA2). The multigauge controller is located in the left cabinet (Figure 5-29).

<table>
<thead>
<tr>
<th>Gauge Type</th>
<th>Gauge Range</th>
<th>Gauge Name</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple Gauge</td>
<td>Atmospheric pressure (7.6 × 10^2 torr) to 1 × 10^-3 torr</td>
<td>TC2</td>
<td>On initial pumpdown, the turbo pumps start 2 minutes after AC power is supplied to the instrument.</td>
</tr>
<tr>
<td>Ion Gauge (Bayard-Alpert Gauge)</td>
<td>9.9 × 10^-4 torr to 1.0 × 10^-8 torr</td>
<td>BA1, BA2</td>
<td>You can enable high-voltage power only when BA1 reads 9.0 × 10^-6 torr or less.</td>
</tr>
</tbody>
</table>

Figure 5-29 Location of the Multigauge Controller in Left Cabinet (Front View)

Use the multigauge controller to:
- Verify the status of the BA1 and BA2 gauges
- Verify the status of the TC2 gauge
- Degas the BA1 and BA2 gauges
- Verify the baud rate

You access the multigauge controller functions and parameters through the front panel keyboard (Figure 5-30). The readings, prompts, and error messages are displayed on the liquid crystal display (LCD). Pressing the F(unction) key before pressing another key accesses the second function of the next key you press.
The multigauge controller key functions are:

- **CHAN**—Toggles through readings as described in the following table.

<table>
<thead>
<tr>
<th>Gauge</th>
<th>Measures</th>
<th>Expected Pressure (torr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA1</td>
<td>Pressure in main source chamber</td>
<td>Less than 5×10^{-7}</td>
</tr>
<tr>
<td>BA2</td>
<td>Pressure in mirror chamber</td>
<td>Less than 5×10^{-5}</td>
</tr>
<tr>
<td>TC2</td>
<td>Pressure in sample loading chamber</td>
<td>Less than 5×10^{-2} during operation. Higher when loading or ejecting a sample plate.</td>
</tr>
<tr>
<td>TC1, TC3, TC4</td>
<td>Not used; displays E03, indicating gauge not connected</td>
<td>——</td>
</tr>
</tbody>
</table>

- **EMIS**—Turns Bayard-Alpert gauges, BA1 and BA2, on or off.
- **F, EMIS**—Pressing F, then EMIS, turns BA1 and BA2 on. Pressing EMIS turns the gauge off.
- **DEGAS**—Turns degassing of BA1 and BA2 on and off. When activated, the red DEGAS legend lights up.
- **VAC**—Allows calibration of the thermocouple gauge, TC2, vacuum reading.
- **ATM**—Displays TC2 atmosphere.
- **F, KBAUD**—Pressing F, then KBAUD, displays and allows programming of the RS232 baud rate and parity.
• **Up arrow**—Increments digits when you enter parameters.

• **Down arrow**—Decrements digits when you enter parameters.

• **F**—The F key has several functions:
 —Accesses the second function of a subsequently pressed key when pressed.
 —Advances from one flashing digit to another when pressed when entering parameters.
 —Fast-forwards to the end of the procedure when pressed and held.

The multigauge controller requires:

• **Two fuses**—AC distribution board fuses F11A and F11B. The fuse OK indicator is DS11 (Figure 5-31).

• **110 V power**—From the AC distribution board connection J11. If the power does not turn on, check that the main power switch on the back of the multigauge controller is in the On position.

![Figure 5-31 Multigauge Controller AC Distribution Board Connection and Fuses](Side view)

See the Varian Multigauge Controller Manual shipped with each Voyager-DE STR system for detailed information about the functioning of this unit.

5.7.3 Multigauge Controller, Computer, and Workstation Interaction

Baud Rate

The multigauge controller-to-Voyager connection uses RS232 technology. The Voyager workstation, computer serial ports, and the multigauge controller communicate bidirectionally at 9600 baud (decimal).

The baud rate sets the number of bits per second that can be transmitted to the computer system. If the baud rate is set incorrectly, the multigauge controller can not communicate with the Voyager software, and the Voyager software will not initialize the vacuum system.
Chapter 5 Troubleshooting by Components

The Voyager baud rate is factory-set and is displayed on the multigauge controller as 9.6 kBaud.

Verifying and Resetting the Baud Rate

Occasionally the Voyager software displays a Vacuum Gauge Communication Failure error message upon initialization. This error can occur if the baud rate is set correctly in the multigauge controller, but is set incorrectly in the Voyager external computer registry.

Verify that the baud rate setting on the multigauge controller is 9.6 kBaud. If the multigauge controller baud rate is correct, verify the Voyager computer registry baud rate. To verify the baud rate on the multigauge controller, press Function-kBaud. A blinking number is displayed. If necessary, you can change the number to 9.6 by pressing the arrow keys. To enter and apply the number, press the Function key. Press the Function key again to return to the pressure display.

Accessing the Voyager Computer Registry Keys

You can verify and reset baud rate and other Voyager registry keys. To access the registry keys:

- On the Voyager computer desktop, select Start, then Run.
- In the run dialog box, type regedt32 or select regedt32 from the drop-down list.
- Click OK.
 The Registry Editor is displayed.

Verifying and Resetting Baud Rate in the Voyager Registry

Verify the Voyager computer registry baud rate as follows:

1. Access the Voyager computer registry (Voyager vacuum monitor baud) as described in Accessing the Voyager Computer Registry Keys above.

2. Check the Voyager vacuum monitor baud rate setting in the registry by selecting the following path in the left panel of the Registry Editor window (Figure 5-32 on page 4-49):

 HKEY_LOCAL_MACHINE
 SOFTWARE
 PerSeptiveBiosystems
 Maldi
 Server
 HiVolt
 Vacuum Monitor
 Vacuum Monitor Baud Rate

3. In the Registry Editor window right panel, double-click default.
 The DWORD Editor box is displayed.

4. In the DWORD Editor box, select Decimal.

5. If the baud rate registry setting is other than 9600, type 9600 in the Data field.

6. Click OK.

7. Close the Registry Editor window.
Figure 5-32 Path to the Vacuum Monitor Baud Registry Setting
Verifying and Resetting Com Port Settings

The multigauge controller communicates via the computer communications port 2. A Vacuum Gauge Communication Failure error occurs if the Voyager computer Com Port settings are incorrect. Verify the Voyager software Com Port settings by selecting the following on the Voyager computer desktop:

1. On the Voyager computer desktop, select **Start, Settings, Control Panel**
2. Double-click **Ports**, then **Com2**

 Check that the settings displayed match those in Table 5-7.

 Table 5-7 Settings for COM2

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate</td>
<td>9600</td>
</tr>
<tr>
<td>Data Bits</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>Odd</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>1</td>
</tr>
<tr>
<td>Flow Control</td>
<td>None</td>
</tr>
</tbody>
</table>

3. If necessary, select **9600** from the drop-down list. Click **OK**.

 To set the Vacuum monitor com port to COM2 in the registry settings:

 1. Open the registry as described "Accessing the Voyager Computer Registry Keys" on page 5-48
 2. Select the following path in the left panel of the Registry Editor window:

   ```
   HKEY_LOCAL_MACHINE
   SOFTWARE
   PerSeptiveBiosystems
   Maldi
   Server
   HiVolt
   Vacuum Monitor
   Vacuum Monitor COMM Port
   ```
 3. In the Registry Editor window right panel, double-click **default**.
 4. If necessary, in the string field, type **COM2**. Click **OK**.

Verifying and Resetting Vacuum Monitor Parity

Similarly, you can verify the parity setting. The Voyager registry key must be set to 1. The multigauge controller can be set to any value. The default parity setting in the Voyager computer registry is 1.

Parity codes are summarized in **Table 5-8**.
Table 5-8 Parity Codes

<table>
<thead>
<tr>
<th>System</th>
<th>Parity Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voyager computer</td>
<td>Default is Odd (1)</td>
</tr>
<tr>
<td>Voyager software</td>
<td>Must be set to 1</td>
</tr>
<tr>
<td>Multigauge controller</td>
<td>Can be different from the Voyager software setting. Can be set to any of the following: • O (odd) • E (even) • — (none)</td>
</tr>
</tbody>
</table>

Verifying Parity in the Voyager Registry

To verify parity in the Voyager registry setting:

1. Access the Voyager computer registry (Voyager vacuum monitor baud) as described in “Accessing the Voyager Computer Registry Keys” on page 4-48.

2. Check the Voyager vacuum monitor parity setting in the registry by selecting the following path in the Registry Editor window left panel:

 HKEY_LOCAL_MACHINE
 SOFTWARE
 PerSeptiveBiosystems
 Maldi
 Server
 HiVolt
 Vacuum Monitor
 Vacuum Monitor Parity

3. In the Registry Editor window right panel, select default.

 The DWORD Editor box is displayed.

4. In the DWORD Editor box, select Decimal.

5. If the parity setting is a value other than 1, type 1 in the Data field.

6. Click OK.

Thermocouple Gauge

High pressures such as those found in the fore pumping of a vacuum system are generally measured with a thermocouple gauge. The thermocouple gauge (Figure 5-33 on page 4-52) measures the heat transfer rate from a heated wire at approximately 350 °C. Heat transfer and pressure are directly proportional. As gas is removed from the system, less heat is removed. The changes in temperature are measured by a thermocouple junction and its output is displayed as changes in pressure.
Because factors other than pressure affect the thermocouple reading, the thermocouple gauge provides an indication of the vacuum pressure rather than an accurate measurement of it. In general, the true pressure is within approximately 30% of the measured value.

Inaccuracies in pressure readings result when the dissipation of heat occurs at a different rate than expected. Factors affecting the thermocouple accuracy are:

- **Presence of a gas other than air**—The system is calibrated for air. If the residual gas in the vacuum system is a different gas, the dissipation of heat occurs at a different rate. For example, hydrogen or helium in the system causes the heat to be conducted away from the thermocouple more rapidly than air, resulting in a higher than actual pressure reading.

- **Contaminants on the surface of the thermocouple and heater**

Calibrating the Thermocouple Gauge

Before using the thermocouple, select TC2 using the CHAN key. Set the atmosphere and vacuum by using the ATM and VAC keys (Table 5-9).
Table 5-9 Setting Atmosphere and Vacuum

<table>
<thead>
<tr>
<th>To Set</th>
<th>Do This</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere</td>
<td>1. Expose TC2 to atmospheric pressure.</td>
</tr>
<tr>
<td></td>
<td>2. Press the ATM key.</td>
</tr>
<tr>
<td></td>
<td>The main display reads 760 torr.</td>
</tr>
<tr>
<td>Vacuum</td>
<td>1. Expose TC2 to a known vacuum pressure (10(^{-3}) torr range).</td>
</tr>
<tr>
<td></td>
<td>2. Press the VAC key.</td>
</tr>
<tr>
<td></td>
<td>The display shows the most recent vacuum setting with the most significant digit flashing.</td>
</tr>
<tr>
<td></td>
<td>3. Set the display to the vacuum level desired.</td>
</tr>
<tr>
<td></td>
<td>TC2 is now calibrated.</td>
</tr>
</tbody>
</table>

Ion Gauge

The ion gauge (Figure 5-34 on page 5-53) consists of a collector, grid, and filament. Figure 5-35 on page 5-54 shows the location of BA1 within the Voyager-DE STR.

Figure 5-34 Bayard-Alpert (BA1, BA2) Ion Gauge
An ionization gauge calculates pressure by simultaneously measuring emission current and ion current. The emission current results from the electrons emitted from the filament (I_e). The positive ions that impact the collector (and pick up electrons from ground) account for the positive ion current (I_+.)

Pressure is directly proportional to the ratio of ion current to emission current and indirectly proportional to the sensitivity of the gauge.

Factors affecting ion gauge accuracy include:
- Contaminants
- Composition of gas used
- Outgassing of residual gases in the glass and metal parts
- X-ray limit

Degassing the Bayard-Alpert Gauges

If the vacuum does not come down, contaminants may be trapped within the gauge. The Degas function cleans the vacuum gauges of residual contaminants. Degassing occurs through a controlled high temperature baking of the gauge. Degas the gauge periodically and whenever the system has been open.

Before degassing can begin, the:
- Emission of the gauge must be on
- Pressure must be less than or equal to 1×10^{-5} torr

To begin degassing, press the multigauge controller **Degas** key. Observe the pressure readings. The pressure peaks asymmetrically, and then drops to a lower equilibrium pressure.

NOTE: If the Voyager system is On and the pressure rises above the vacuum setting, Voyager software displays an error. Reset the Voyager software after the pressure normalizes to below the vacuum setting.
You can shut off degassing manually. When the equilibrium pressure stabilizes, press the Degas key to end degassing. If you do not manually shut off degassing, degassing shuts off automatically after a preset time. For information, see the Varian Multigauge Controller Manual.

Multigauge Controller Error Codes

When an error occurs, the multigauge controller software displays an error code. Error messages may be displayed in the Voyager Instrument Control Panel (Figure 5-36). (Wording of error messages may vary, depending on the version of Voyager Software.)

![Figure 5-36 Voyager Software Error Message Corresponding to the Multigauge Controller E3 Error Code](image)

Some of the most common error codes and corresponding troubleshooting hints are presented in Section 6.2, Multigauge Controller Common Error Codes. See the Varian Multigauge Controller Manual for the complete list of codes.
6 Troubleshooting by Symptoms

This chapter contains the following sections:

6.1 Troubleshooting Tables... 6-2
 6.1.1 Spectral Problems ...6-2
 6.1.2 Sample Loading and Main Source Chamber..................6-4
 6.1.3 Computer System and Software6-9
 6.1.4 Power Supplies and Circuit Boards6-10
 6.1.5 Vacuum System ...6-11
6.2 Multigauge Controller Common Error Codes 6-16
6.3 LED Indicators.. 6-18
6.1 Troubleshooting Tables

This section includes symptoms, possible causes, and actions to troubleshoot the:

- Spectral problems
- Sample Loading and Main Source Chamber
- Computer and software
- Power supply
- Vacuum system

For additional information, see the Voyager User Guide.

6.1.1 Spectral Problems

Table 6-1 Spectral Troubleshooting

<table>
<thead>
<tr>
<th>Item</th>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In linear mode, flat signal on oscilloscope or Monitor window for matrix and sample region when in positive ion mode. Same result when switched to reflector mode.</td>
<td>A Defective fuse or DAC board.</td>
<td>Check fuse. Replace if defective.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check that source and grid DAC output is correct.</td>
<td>Replace if defective.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B Einzel lens is wrong polarity or is shorted to ground.</td>
<td>Check einzel lens polarity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check for shorts.</td>
<td>Check for shorts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C High-voltage connection to the sample plate is broken or disconnected.</td>
<td>Adjust or replace connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D High-voltage power supply is defective.</td>
<td>Replace high-voltage power supply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E Laser beam is not striking the sample with adequate intensity.</td>
<td>Check the attenuator functioning. See “Adjusting the Attenuator Position” on page 5-41.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For the Nitrogen laser, verify laser output is >200 µJ.</td>
<td>Troubleshoot the linear detector.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F Linear detector is defective.</td>
<td></td>
</tr>
</tbody>
</table>

For the Nitrogen laser, verify laser output is >200 µJ.
Table 6-1 Spectral Troubleshooting (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In linear mode, flat signal on oscilloscope or Monitor window for matrix and sample region when in positive ion mode. Same result when switched to reflector mode. (continued)</td>
<td>G Reflector detector is defective.</td>
<td>Troubleshoot the reflector detector.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H Digitizer or one of its channels is defective.</td>
<td>Troubleshoot the digitizer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Delayed-Extraction Mode

<table>
<thead>
<tr>
<th>Item</th>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Flat signal on oscilloscope or monitor window for matrix and sample region when in linear or reflective mode. Peaks display when switched to continuous mode.</td>
<td>A Delayed-extraction switch box is defective.</td>
<td>Verify source voltage output is rising when the laser is firing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Verify all DE switch box LEDs are unlit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check the +5 at connector on DE switch box. Adjust.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check control wiring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Replace DE switch box.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Warning: Before servicing the DE switch box, disable high-voltages.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B Delayed-extraction timer pulse generator board is defective.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check for −5.2 V. Replace DE timer pulse generator board.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: In one version of the Quad power supply, the −5.2 V is not present on the pulse generator board.</td>
</tr>
</tbody>
</table>
6.1.2 Sample Loading and Main Source Chamber

Table 6-2 includes troubleshooting symptoms related to the sample load and eject mechanisms such as the following components:

- Flap doors
- Linear actuators
- Magnetic grabber
- Sample plate
- Source pedestal and clips
- XY feedthroughs
- XY microswitches

Error and warning messages displayed when using the Diagnostics Mechanical control page are explained in Section 5.2.7. Also, because the linear and flap door actuators are pneumatically controlled, the performance of the sample loading chamber may be affected by problems in the vacuum system.

Table 6-2 Source and Sample Loading Chamber Troubleshooting

<table>
<thead>
<tr>
<th>Item</th>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>When the system covers are removed and the source is in motion, a loud grinding or squeaking noise can be heard in the source area; or the source sticks when trying to achieve desired location.</td>
<td>A X and/or Y feedthroughs need lubrication.</td>
<td>Lubricate feedthroughs. (See “Lubricating the X and Y Feedthroughs” on page 5-28.)</td>
</tr>
<tr>
<td>2</td>
<td>Sample plate either occasionally or consistently falls off the grabber during sample plate loading</td>
<td>A The magnetic grabber failed.</td>
<td>With the grabber attached to circuit, check that voltage to the grabber switches properly: From a low +5 V logic state when the grabber is off to a high +5 V logic state when energized. If the voltage is not switching properly, check for continuity through grabber coils.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B The Y-load coordinate is misaligned.</td>
<td>With the source open, adjust the alignment of the Y-coordinate by varying the Y-load coordinate value in the diagnostics software. Use a mirror and a small light to verify distance from edge of sample plate to inside edges of source, not to source clips.</td>
</tr>
<tr>
<td>Item</td>
<td>Symptom</td>
<td>Possible Cause</td>
<td>Action</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>Sample plate either occasionally or consistently falls off the grabber during sample plate loading (continued)</td>
<td>C Source pedestal is not rotationally aligned with the grabber.</td>
<td>Place a known good plate in the source. When extending the grabber, check that both poles of the grabber touch the sample plate simultaneously. If not, adjust alignment. (For information, see “Aligning the Source Pedestal” on page 5-24.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D Source side clips have damaged leading ends. or Sample plate(s) have damaged edges.</td>
<td>Check the clip edges for denting, dimpling, and other damage. Smooth the edges with a small flat file and MicroFinish cloth. Replace if necessary. If no clip replacements are available, reverse the clips. (For information, see “Source Clips” on page 5-23.) Also check the sample plates. Smooth the edges with a small file and MicroFinish cloth or replace them as appropriate.</td>
</tr>
<tr>
<td>3</td>
<td>Sample plate cannot be pushed fully onto the stage</td>
<td>A Rear source clip is damaged.</td>
<td>Check the rear source clip for "dimples" or dents. Smooth the edges with a small file and MicroFinish cloth. If necessary, replace the clip. (For information, see “Source Clips” on page 5-23.) Also check the sample plates. Smooth the edges with a small file and MicroFinish cloth or replace them as appropriate.</td>
</tr>
<tr>
<td>Item</td>
<td>Symptom</td>
<td>Possible Cause</td>
<td>Action</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| 4 | During sample plate ejection, the sample plate either occasionally or consistently cannot be pulled off the stage by the grabber | A Grabber is not being energized. | With the grabber attached to circuit, check that voltage to the grabber switches properly:
From a low +5 V logic state when the grabber is off to a high +5 V logic state when energized.
If the voltage is not switching properly, check for continuity through grabber coils. |
| | B X-coordinate needs adjusting. | | To adjust the X-load coordinate while the system is under vacuum:
1. Extend the magnetic grabber (attached to Linear 1 actuator; see the Voyager diagnostics software Mechanical Control page).
2. Observe the deflection of a sample plate when the grabber turned off. The stage deflects 1 to 2 mm when the grabber pushes on it.
There is some play between the sample plate and source when the plate is mounted in the source. When the X-load coordinate is set correctly, the plate should deflect slightly more than the source. |
During sample plate ejection, the sample plate either occasionally or consistently cannot be pulled off the stage by the grabber. (continued)

C Source pedestal is not rotationally aligned with the grabber. Place a known good plate in the source. Verify the grabber poles are of equal length. If necessary, replace the grabber poles. When extending the grabber, check that both poles of the grabber touch the sample plate simultaneously. If not, adjust alignment. (For information, see “Aligning the Source Pedestal” on page 5-24.)

D Linear 1 retract speed is too fast. The retract speed control valve (bleed screw) on the end of Linear actuator 1 (farthest away from the source housing) may be set improperly. The actuator may retract too quickly, breaking the magnetic connection between the sample plate and grabber. Adjust the retraction rate to a slower speed by turning the retract speed control valve clockwise. (See Figure 5-12 on page 5-25.)

E Detent balls on source are binding because sample contamination is getting into the holes where the balls are mounted. If the detent balls provide too much resistance to compression, the grabber may have insufficient force to pull the plate from the source. To break the resistance, press down on the balls with an Allen wrench or similar tool. If necessary, disassemble and clean or replace the source.

F Springs are too stiff. Press down on the balls with an Allen wrench or similar tool.

Table 6-2 Source and Sample Loading Chamber Troubleshooting (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>During sample plate ejection, the sample plate either occasionally or</td>
<td>C Source pedestal is not rotationally aligned with the grabber. Place a known</td>
<td>Adjust the retraction rate to a slower speed by turning the retract</td>
</tr>
<tr>
<td></td>
<td>consistently cannot be pulled off the stage by the grabber. (continued)</td>
<td>good plate in the source. Verify the grabber poles are of equal length. If</td>
<td>speed control valve clockwise. (See Figure 5-12 on page 5-25.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>necessary, replace the grabber poles. When extending the grabber, check that</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>both poles of the grabber touch the sample plate simultaneously. If not,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>adjust alignment. (For information, see “Aligning the Source Pedestal” on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>page 5-24.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D Linear 1 retract speed is too fast. The retract speed control valve (bleed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>screw) on the end of Linear actuator 1 (farthest away from the source housing)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>may be set improperly. The actuator may retract too quickly, breaking the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>magnetic connection between the sample plate and grabber. Adjust the retraction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rate to a slower speed by turning the retract speed control valve clockwise.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(See Figure 5-12 on page 5-25.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E Detent balls on source are binding because sample contamination is getting</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>into the holes where the balls are mounted. If the detent balls provide too</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>much resistance to compression, the grabber may have insufficient force to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pull the plate from the source. To break the resistance, press down on the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>balls with an Allen wrench or similar tool. If necessary, disassemble and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>clean or replace the source.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F Springs are too stiff. Press down on the balls with an Allen wrench or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>similar tool.</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table 6-2 Source and Sample Loading Chamber Troubleshooting (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>During sample plate ejection, the sample plate either occasionally or consistently cannot be pulled off the stage by the grabber (continued)</td>
<td>G Defects on plate edges not allowing plate to release from detent balls or source edge clips.</td>
<td>Check the edges of all sample plates in use for damage. Smooth the edges with a small flat file and MicroFinish cloth. If necessary, replace the sample plate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H Contamination on sample plate.</td>
<td>Check the bottoms and edges of all sample plates in use for contamination. Clean. If necessary, replace the sample plate.</td>
</tr>
<tr>
<td>5</td>
<td>Grabber not contacting plate during loading or ejection</td>
<td>Insufficient X-load adjustment available to enable plate to be adequately contacted by the grabber during plate loading or ejection. Linear 1 actuator shaft is too short for system tolerances. (More often seen with older Bimba style actuators.)</td>
<td>Unscrew the grabber approximately 3/32" (roughly two turns) back on actuator shaft. Leave enough threads available on actuator shaft to securely attach the jam nut (cap) back onto shaft. To prevent the grabber and cap from loosening, place a small amount of thread sealant (such as LockTite) on the actuator shaft threads.</td>
</tr>
<tr>
<td>6</td>
<td>X or Y load coordinates require continual adjustment Or The X or Y home switches are moving</td>
<td>The X and Y home switch brackets are loose.</td>
<td>Tighten such that when the linear feedthroughs are fully extended to the home position, you see no movement of the home switches.</td>
</tr>
</tbody>
</table>
6.1.3 Computer System and Software

<table>
<thead>
<tr>
<th>Item</th>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B Opto-trigger board is faulty.</td>
<td>Replace trigger PCB.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C Digitizer trigger channel is defective.</td>
<td>Replace digitizer.</td>
</tr>
<tr>
<td>2</td>
<td>Acquisition Error (Version 5.0 software)</td>
<td>A Laser is not firing.</td>
<td>Verify proper operation of laser. See laser warnings below.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B Opto-trigger board is faulty.</td>
<td>Replace opto-trigger PCB.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C Digitizer trigger channel is defective.</td>
<td>Replace digitizer.</td>
</tr>
<tr>
<td>3</td>
<td>An error message appears during plate loading or ejection indicating that the source is not in the load position, even though the compressor is energized.</td>
<td>A load position microswitch needs adjusting or replacing.</td>
<td>Adjust the load switch bracket closer to the feedthrough post. Caution: Moving the switch too close to the post will cause premature failure of the switch. Replace the switch if necessary.</td>
</tr>
</tbody>
</table>

WARNING

LASER HAZARD. When instrument panels are removed, high-voltage contacts are exposed, and the laser emits ultraviolet radiation. Wear laser safety goggles when you remove panels for service.

WARNING

LASER HAZARD. Exposure to direct or reflected laser light can burn the retina and leave permanent blind spots. Never look directly into the laser beam. Remove jewelry and other items that can reflect the beam into your eyes. Wear laser safety goggles during laser alignment. Protect others from exposure to the beam. Post a laser warning sign while performing the alignment.
6.1.4 Power Supplies and Circuit Boards

Table 6-4 Power Supply and Circuit Board Troubleshooting

<table>
<thead>
<tr>
<th>Item</th>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High-voltage interlock error</td>
<td>Cover is open (front, side, and rear panels).</td>
<td>Close and secure all Voyager workstation covers. Insert interlock service tag.</td>
</tr>
<tr>
<td>2</td>
<td>High-voltage interlock error occurs with covers and service interlock tag are in place.</td>
<td>A Fuse is blown.</td>
<td>Check the 5 V fuse. Replace.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B Cable connection is faulty.</td>
<td>Verify the +5 V cable connection to the 48-bit I/O board is properly connected. Verify the cable connections between the control board and 48-bit I/O card are secure.</td>
</tr>
<tr>
<td>3</td>
<td>High voltage is off</td>
<td>DAC voltage is not present.</td>
<td>Replace DAC</td>
</tr>
<tr>
<td>4</td>
<td>After replacing the 30 kV power supply, voltage less than 30 kV is observed.</td>
<td>I pot needs adjusting.</td>
<td>Turn I pot counter clockwise three turns.</td>
</tr>
<tr>
<td>5</td>
<td>+5 V reference is less than or greater than 5 V</td>
<td>Reference pot needs adjusting.</td>
<td>Adjust the DAC reference pot.</td>
</tr>
<tr>
<td>6</td>
<td>Source or grid DAC voltage output incorrect</td>
<td>A High-voltage arc scrambled DAC and DAC output. +5 V reference is less than or greater than 5 V.</td>
<td>Reload DAC by changing a value or loading a different method.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B ±15 V fuse or power supply is faulty.</td>
<td>Check fuse or power supply. Replace.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C DAC output is too low.</td>
<td>Replace DAC PCB.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D DAC output is incorrect.</td>
<td>Check 5 V reference (test point 9) voltage on consolidated control board. If necessary, adjust to 5.00 V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E 48-bit I/O board is faulty.</td>
<td>Replace 48-bit I/O board.</td>
</tr>
</tbody>
</table>
6.1.5 Vacuum System

“Multigauge Controller Common Error Codes” on page -16 lists the error codes displayed by the Multigauge controller, possible causes, and actions.

Table 6-5 Vacuum System Troubleshooting

<table>
<thead>
<tr>
<th>Item</th>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TC2 reading shows higher than normal pressure (i.e. TC2 reading shows atmospheric pressure); It takes a long time to pump down after plate loading.</td>
<td>A Vent valve is stuck open after loading or ejecting the sample plate.</td>
<td>Close the vent valve. Check that 24 V is present to operate the vent valve. Clean or replace the vent valve if it is malfunctioning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B Flap Door 2 is not closing properly.</td>
<td>Check that Flap Door 2 actuator is operating properly. Close Flap Door 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check Flap Door 2 O-ring for any cracks or damages. If it is damaged, replace the O-ring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C A sample plate that was improperly loaded in the transporter and has jammed is interfering with Flap Door 2 closure.</td>
<td>If possible, eject the transporter out. Reseat the plate properly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D The fore pump is not pumping efficiently.</td>
<td>Check the pump oil level and color. Refill oil or replace the oil if the oil color is dark (ice tea color). Replace pump if it is malfunctioning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E Gas flows at vacuum hose connections.</td>
<td>Check the gasket on the clamps. Replace the gasket if it is damaged. Tighten the clamps.</td>
</tr>
</tbody>
</table>

(continued)
Table 6-5 Vacuum System Troubleshooting (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TC2 reading shows higher than normal pressure (i.e. TC2 reading shows atmospheric pressure); It takes a long time to pump down after plate loading. (continued).</td>
<td>F Flap Door 2 is not sealed properly.</td>
<td>Check that the Flap Door and the O-ring are free of dust and fibers. If necessary, clean up any dust or fibers using a laboratory wipe moistened with ethanol (100%). Replace the O-ring if it is damaged. Check that the Flap Valve presses evenly on the O-ring, with the face of the valve being parallel to the face of the Sample Loading Chamber when closed. If it is not parallel, adjust the Flap Valve hinge bar.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G Leaking from the knurled nut on Linear 1 actuator.</td>
<td>Finger-tighten the nut. Do not over-tighten it.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H Leaking from the knurled nut on Linear 2 actuator.</td>
<td>Finger-tighten the nut. Do not over-tighten it.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I Leaking from the knurled nut on Flap Door 1.</td>
<td>Finger-tighten the nut. Do not over-tighten it.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J Samples on the plate are not completely dry.</td>
<td>Dry the samples completely before loading sample plate.</td>
</tr>
</tbody>
</table>

WARNING! CHEMICAL HAZARD. Ethanol is a flammable liquid and vapor. It may cause eye, skin, and upper respiratory tract irritation. Prolonged or repeated contact may dry skin. Exposure may cause central nervous system depression and liver damage. Please read the MSDS and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.
Table 6-5 Vacuum System Troubleshooting (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>BA1 ion gauge shut down with E09 displayed on Multigauge controller display after plate loading/ejecting</td>
<td>A Flap Door 1 is improperly closing.</td>
<td>Check that the sample plate is not stuck at Flap Door 1. Make sure the Flap Door 1 actuator works properly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B Flap Door 1 is improperly sealing.</td>
<td>Align Flap Door 1 Replace damaged O-ring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C Samples on the plate are not completely dry.</td>
<td>Dry the samples completely before loading sample plate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D Foreline Valve 2 is improperly sealing.</td>
<td>Replace Foreline Valve 2 assembly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E Linear 1 actuator is leaking at its O-ring seal.</td>
<td>— The knurled nut may be slightly loose; try tightening. — The O-ring seal under the knurled nut may be binding and in need of lubrication. — The Linear actuator shaft may be scratched or nicked, allowing an air burst to enter the Sample Loading Chamber when the actuator is being extended during the plate loading/ejection process.</td>
</tr>
</tbody>
</table>

(continued)
Table 6-5 Vacuum System Troubleshooting (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>BA1 (or BA2) ion gauge reading shows higher than normal pressure; BA1 (or BA2) ion gauges shut down with E09 on display but TC2 reading is normal.</td>
<td>A Source or reflector turbo is not pumping properly.</td>
<td>Check that when the source turbo or reflector turbo is running, the normal status light is on. If the turbo makes loud whining noise, replace the turbo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B Source or reflector turbo shuts down.</td>
<td>Check the source or reflector turbo fuse on the ac distribution circuit board. Replace if necessary. If the turbo controller is working properly but the turbo cannot be restarted to normal speed, replace the turbo. Check that the corresponding turbo controller is working properly. See the Varian Turbocontroller Instruction Manual.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C Failure of Foreline Valve 1 or 2.</td>
<td>Check the functioning of Foreline Valves 1 and 2. Replace if faulty.</td>
</tr>
<tr>
<td>4</td>
<td>Fore pump is not running.</td>
<td>A Fuse is blown.</td>
<td>Replace the fuse on the Voyager AC distribution board.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B Oil level too low or oil is too dirty.</td>
<td>Refill oil to appropriate level or replace oil completely. Use designated oil for each type of pump.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C Pump is inoperable.</td>
<td>Replace the pump.</td>
</tr>
<tr>
<td>5</td>
<td>Multigauge controller displays E05 error on BA1 or BA2 gauges</td>
<td>A The ion gauge filament is open.</td>
<td>Check the continuity of the filament. If the filament is open, replace the gauge.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B The connection from the ion gauge to the multigauge controller is loose or malfunctioning.</td>
<td>Reseat cable connections.</td>
</tr>
<tr>
<td>Item</td>
<td>Symptom</td>
<td>Possible Cause</td>
<td>Action</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>6</td>
<td>“Ion Gauge Controller not responding” error occurs during vacuum initialization</td>
<td>A BA1 and/or BA2 are not on.</td>
<td>Turn on BA1 and BA2 before starting vacuum initialization.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B Wrong Com port is selected.</td>
<td>In the computer use Com Port 2 for the vacuum gauge controller (see Voyager User Guide).</td>
</tr>
<tr>
<td>7</td>
<td>Vacuum initialization error</td>
<td>BA1 and/or BA2 pressure readings exceed the normal operational pressure limits.</td>
<td>Check vacuum system performance and ensure the pumps are pumping properly. When the system reaches appropriate pressures, re initialize the gauges, if necessary.</td>
</tr>
<tr>
<td>8</td>
<td>When system re-starts after a power outage, the Voyager control panel shows an instrument error when acquiring data.</td>
<td>System pressure has not been pumping down sufficiently before the computer boots up and IHC starts to initialize the system.</td>
<td>Check system pressure. Stop and restart the IHC if system is under normal operating pressures.</td>
</tr>
</tbody>
</table>
6.2 Multigauge Controller Common Error Codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Possible Error Source</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E02</td>
<td>Microburst</td>
<td>Wet sample plate.</td>
<td>Recalibrate microburst tolerance setting to the default by pressing: F, Vac, then A52.</td>
</tr>
<tr>
<td>E03</td>
<td>Ion gauge connection broken or disconnected. The Voyager Control panel displays an error message indicating a high pressure shut down on the ion gauge.</td>
<td>No current.</td>
<td>If resetting the Voyager software clears the error, the problem was between the software and the multigauge controller. If the error persists, the problem is between the Voyager hardware and multigauge controller. Replace or reconnect the cable.</td>
</tr>
<tr>
<td>E04</td>
<td>Filament</td>
<td>BA gauge filament is over current or shorted. Commonly, filament is shorted to the grid.</td>
<td>Measure filament-to-grid with an ohm meter. If the reading is not open, replace the BA gauge. If reading is open, move the BA board to an open slot on the multigauge controller mother board. If the board fails in the new slot, replace the BA board.</td>
</tr>
</tbody>
</table>

(continued)
Table 6-6 Multigauge Controller Common Error Codes (Continued)

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Possible Error Source</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E05</td>
<td>Gauge does not ignite</td>
<td>Power not plugged in to the ion gauge. Faulty BA Board. Faulty BA slot on the multigauge controller mother board.</td>
<td>Move the BA board to an open slot on the multigauge controller mother board. If the board fails in the new slot, replace the BA board.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On reflector systems, bad cable or connection.</td>
<td></td>
</tr>
<tr>
<td>E07</td>
<td>Over temperature</td>
<td>Temperature inside the multigauge controller is over 65 °C.</td>
<td>Verify that the fan is operational. Replace if necessary.</td>
</tr>
<tr>
<td>E08</td>
<td>Multigauge controller board</td>
<td>Board logic failure.</td>
<td>Power down then power up the mass spectrometer. Reset the multigauge controller unit by pressing: F, Vac, then A81. If necessary, replace the multigauge controller unit.</td>
</tr>
<tr>
<td>E09</td>
<td>Vacuum system</td>
<td>Catastrophic leak in the vacuum system.</td>
<td>Toggle through the channels to locate the gauge that is shut down. Check the integrity of the: Foreline hose connections Copper seals O-ring seals Feedthroughs Weldments</td>
</tr>
<tr>
<td>E14</td>
<td>Keypad</td>
<td>Keypad locked.</td>
<td>Unlock the keypad by pressing: F, Vac, then A33.</td>
</tr>
</tbody>
</table>
6.3 LED Indicators

LED indicators reflect the status of the system. Table 6-7 describes LED states and any actions needed to correct the fault.

Table 6-7 LED Indicators

<table>
<thead>
<tr>
<th>LED Location</th>
<th>LED State</th>
<th>System Status</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voyager workstation top panel or D12 on MALDI Consolidated Control Board</td>
<td>Yellow</td>
<td>Turbo initial start-up</td>
<td>Turbos initiated.</td>
</tr>
<tr>
<td></td>
<td>Yellow and green</td>
<td>Turbo building up speed</td>
<td>Turbo is at 80% of full speed.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Turbo at full speed</td>
<td>Turbo is at normal operating conditions (56 krpm).</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Turbo fault</td>
<td>Unplug the turbo pump and plug it in again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If the fault persists, check the:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Turbo pump for turbo failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Turbo pump for turbo controller failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Vacuum system for a severe vacuum leak</td>
</tr>
</tbody>
</table>
This appendix contains the following:

- Technical Service Resources ... A-2
- Contacting Technical Support ... A-5
- Obtaining Technical Documents A-10
- Obtaining Customer Training Information A-11
Technical Service Resources

Overview Figure A-1 shows the available chain of resources to obtain Voyager service and troubleshooting assistance.

Figure A-1 Resource Chain

Immediate Resources
(administered by PSE’s, available 24/7)

Additional Resources
(response < 2 hours)

*Also Field Service Technical Specialist

See “Primary access mode” on page A-3
Field service engineers can review the Voyager (MALDI) Product Support web site and the Voyager (MALDI) Knowledge Database 24 hours/day, 7 days a week. Each database is a repository of information that is fully text searchable and is individually replicated on Notes.

The following table describes the information available and how to access each database.

<table>
<thead>
<tr>
<th>Applied Biosystems Voyager (MALDI) Support Web Site</th>
<th>Voyager (MALDI) Knowledge Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>To provide communication tool for FSE to share facts, questions, and new technical information</td>
</tr>
<tr>
<td>To provide released documents from Houston</td>
<td></td>
</tr>
<tr>
<td>Categories</td>
<td>Electronics</td>
</tr>
<tr>
<td>Installation documents</td>
<td>General</td>
</tr>
<tr>
<td>Parts list</td>
<td>Installation and operation</td>
</tr>
<tr>
<td>Service bulletins, service manual, service notes</td>
<td>Mechanical</td>
</tr>
<tr>
<td>Shareware, software and software installation documents</td>
<td>Service bulletins and notes</td>
</tr>
<tr>
<td>Support contact information</td>
<td>Software</td>
</tr>
<tr>
<td>Guides and related manuals</td>
<td>Spare parts</td>
</tr>
<tr>
<td>Utility programs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary access mode</th>
<th>Additional access modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through the internet, go to:</td>
<td>• Through the Applied Biosystems intranet, go to:</td>
</tr>
<tr>
<td>4LFFAJRMIR?opendocument</td>
<td>(login to the intranet is needed)</td>
</tr>
<tr>
<td></td>
<td>Select: Departments, Product Support, Voyager Support</td>
</tr>
<tr>
<td></td>
<td>• Through the internet, go to:</td>
</tr>
<tr>
<td></td>
<td>http://167.116.75.148/msgboards/</td>
</tr>
<tr>
<td></td>
<td>Voyager.nsf/all?OpenView</td>
</tr>
<tr>
<td></td>
<td>• Through the Applied Biosystems intranet, go to:</td>
</tr>
<tr>
<td></td>
<td>https://gene.peintranet.net/ (login to the intranet is needed)</td>
</tr>
<tr>
<td></td>
<td>Select: Departments, Product Support, Link to the MALDI Knowledge Database*****</td>
</tr>
</tbody>
</table>
How to add content

<table>
<thead>
<tr>
<th>Applied Biosystems Voyager (MALDI) Support Web Site</th>
<th>Voyager (MALDI) Knowledge Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail a Voyager product engineer (specialist)</td>
<td>If you have access to Lotus Notes or the Applied Biosystems intranet, you can add content directly to the knowledge database. Otherwise, you can email contributions to: Voyager@appliedbiosystems.com.</td>
</tr>
</tbody>
</table>
Contacting Technical Support

Overview
You can contact Applied Biosystems for technical support:
- By e-mail
- By telephone or fax
- Through the Applied Biosystems Technical Support web site

Note: For information on obtaining technical documents such as Applied Biosystems user documents, MSDSs, and certificates of analysis, see “Obtaining Technical Documents” on page A-10.

By E-Mail
You can contact technical support by e-mail for help in the product areas listed below.

<table>
<thead>
<tr>
<th>Product/Product Area</th>
<th>E-Mail Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic Analysis (DNA Sequencing)</td>
<td>galab@appliedbiosystems.com</td>
</tr>
<tr>
<td>Sequence Detection Systems and PCR</td>
<td>pcrlab@appliedbiosystems.com</td>
</tr>
<tr>
<td>Protein Sequencing, Peptide, and DNA Synthesis</td>
<td>corelab@appliedbiosystems.com</td>
</tr>
<tr>
<td>Biochromatography</td>
<td>tsupport@appliedbiosystems.com</td>
</tr>
<tr>
<td>PerSeptive DNA, PNA and Peptide Synthesis systems</td>
<td></td>
</tr>
<tr>
<td>FMAT™ 8100 HTS System</td>
<td></td>
</tr>
<tr>
<td>CytoFluor® 4000 Fluorescence Plate Reader</td>
<td></td>
</tr>
<tr>
<td>Mariner™ Mass Spectrometers</td>
<td></td>
</tr>
<tr>
<td>MassGenotyping Solution 1™ (MGS1) System</td>
<td></td>
</tr>
<tr>
<td>Voyager™ Mass Spectrometers</td>
<td></td>
</tr>
<tr>
<td>LC/MS (Applied Biosystems/MDS Sciex)</td>
<td>support@sciex.com</td>
</tr>
<tr>
<td>Chemiluminescence (Tropix)</td>
<td>tropix@appliedbiosystems.com</td>
</tr>
</tbody>
</table>

By Telephone or Fax
In North America
To contact Applied Biosystems Technical Support in North America, use the telephone or fax numbers in the table below.

Note: To schedule a service call for other support needs, or in case of an emergency, dial 1.800.831.6844, then press 1.

<table>
<thead>
<tr>
<th>Product/Product Area</th>
<th>Telephone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI PRISM® 3700 DNA Analyzer</td>
<td>1.800.831.6844, then press 8<sup>a</sup></td>
<td>1.650.638.5981</td>
</tr>
<tr>
<td>DNA Synthesis</td>
<td>1.800.831.6844, press 2, then press 1<sup>b</sup></td>
<td>1.650.638.5981</td>
</tr>
<tr>
<td>Product/Product Area</td>
<td>Telephone</td>
<td>Fax</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>Fluorescent DNA Sequencing</td>
<td>1.800.831.6844, press 2, then press 2a</td>
<td>1.650.638.5981</td>
</tr>
<tr>
<td>Fluorescent Fragment Analysis (including GeneScan applications)</td>
<td>1.800.831.6844, press 2, then press 3a</td>
<td>1.650.638.5981</td>
</tr>
<tr>
<td>Integrated Thermal Cycler (ABI Prism® 877 and Catalyst 800 instruments)</td>
<td>1.800.831.6844, press 2, then press 4a</td>
<td>1.650.638.5981</td>
</tr>
<tr>
<td>ABI Prism® 3100 Genetic Analyzer</td>
<td>1.800.831.6844, press 2, then press 6a</td>
<td>1.650.638.5981</td>
</tr>
<tr>
<td>Peptide Synthesis (433 and 43x Systems)</td>
<td>1.800.831.6844, press 3, then press 1a</td>
<td>1.650.638.5981</td>
</tr>
<tr>
<td>Protein Sequencing (Procise® Protein Sequencing Systems)</td>
<td>1.800.831.6844, press 3, then press 2a</td>
<td>1.650.638.5981</td>
</tr>
<tr>
<td>PCR and Sequence Detection</td>
<td>1.800.762.4001, then press: 1 for PCRa 2 for TaqMan® applications and Sequence Detection Systems including ABI Prism 7700, 7900, and 5700a 6 for the 6700 Automated Sample Prep Systema or 1.800.831.6844, then press 5a</td>
<td>1.240.453.4613</td>
</tr>
<tr>
<td>• Voyager™ MALDI-TOF Biospectrometry Workstations • Mariner™ ESI-TOF Mass Spectrometry Workstations • MassGenotyping Solution 1™ (MGS1) System</td>
<td>1.800.899.5858, press 1, then press 3b</td>
<td>1.508.383.7855</td>
</tr>
<tr>
<td>Biochromatography (BioCAD®, SPRINT™, VISION™, and INTEGRAL® Workstations and POROS® Perfusion Chromatography Products)</td>
<td>1.800.899.5858, press 1, then press 4b</td>
<td>1.508.383.7855</td>
</tr>
<tr>
<td>Expedite™ Nucleic Acid Synthesis Systems</td>
<td>1.800.899.5858, press 1, then press 5b</td>
<td>1.508.383.7855</td>
</tr>
<tr>
<td>Peptide Synthesis (Pioneer™ and 9050 Plus Peptide Synthesizers)</td>
<td>1.800.899.5858, press 1, then press 5b</td>
<td>1.508.383.7855</td>
</tr>
</tbody>
</table>
Outside North America

To contact Applied Biosystems Technical Support or Field Service outside North America, use the telephone or fax numbers below.

<table>
<thead>
<tr>
<th>Product/Product Area</th>
<th>Telephone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNA Custom and Synthesis</td>
<td>1.800.899.5858, press 1, then press 5b</td>
<td>1.508.383.7855</td>
</tr>
<tr>
<td>• FMAT™ 8100 HTS System</td>
<td>1.800.899.5858, press 1, then press 6b</td>
<td>1.508.383.7855</td>
</tr>
<tr>
<td>• CytoFluor® 4000 Fluorescence Plate Reader</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemiluminescence (Tropix)</td>
<td>1.800.542.2369 (U.S. only), or 1.781.271.0045c</td>
<td>1.781.275.8581</td>
</tr>
<tr>
<td>LC/MS (Applied Biosystems/MDS Sciex)</td>
<td>1.800.952.4716</td>
<td>1.508.383.7899</td>
</tr>
</tbody>
</table>

a. 5:30 A.M. to 5:00 P.M. Pacific time.
b. 8:00 A.M. to 6:00 P.M. Eastern time.
c. 9:00 A.M. to 5:00 P.M. Eastern time.

<table>
<thead>
<tr>
<th>Region</th>
<th>Telephone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Asia, China, Oceania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia (Scoresby, Victoria)</td>
<td>61 3 9730 8600</td>
<td>61 3 9730 8799</td>
</tr>
<tr>
<td>China (Beijing)</td>
<td>86 10 64106608 or 86 800 8100497</td>
<td>86 10 64106617</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>852 2756 6928</td>
<td>852 2756 6968</td>
</tr>
<tr>
<td>Korea (Seoul)</td>
<td>82 2 5936470/6471</td>
<td>82 2 5936472</td>
</tr>
<tr>
<td>Malaysia (Petaling Jaya)</td>
<td>60 3 79588268</td>
<td>603 79549043</td>
</tr>
<tr>
<td>Singapore</td>
<td>65 896 2168</td>
<td>65 896 2147</td>
</tr>
<tr>
<td>Taiwan (Taipei Hsien)</td>
<td>886 2 2358 2838</td>
<td>886 2 2358 2839</td>
</tr>
<tr>
<td>Thailand (Bangkok)</td>
<td>66 2 719 6405</td>
<td>662 319 9788</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria (Wien)</td>
<td>43 (0)1 867 35 75 00</td>
<td>43 (0)1 867 35 75 11</td>
</tr>
<tr>
<td>Belgium</td>
<td>32 (0)2 532 4484</td>
<td>32 (0)2 582 1886</td>
</tr>
<tr>
<td>Denmark (Naerum)</td>
<td>45 45 58 60 00</td>
<td>45 45 58 60 01</td>
</tr>
<tr>
<td>Finland (Espoo)</td>
<td>358 (0)9 251 24 250</td>
<td>358 (0)9 251 24 243</td>
</tr>
<tr>
<td>France (Paris)</td>
<td>33 (0)1 69 59 85 85</td>
<td>33 (0)1 69 59 85 00</td>
</tr>
<tr>
<td>Region</td>
<td>Telephone</td>
<td>Fax</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Germany (Weiterstadt)</td>
<td>49 (0) 6150 101 0</td>
<td>49 (0) 6150 101 01</td>
</tr>
<tr>
<td>Italy (Milano)</td>
<td>39 (0)39 83891</td>
<td>39 (0)39 8389492</td>
</tr>
<tr>
<td>Norway (Oslo)</td>
<td>47 23 12 06 05</td>
<td>47 23 12 05 75</td>
</tr>
<tr>
<td>Portugal (Lisboa)</td>
<td>351.(0)22.605.33.14</td>
<td>351.(0)22.605.33.15</td>
</tr>
<tr>
<td>Spain (Tres Cantos)</td>
<td>34.(0)91.806.1210</td>
<td>34.(0)91.806.1206</td>
</tr>
<tr>
<td>Sweden (Stockholm)</td>
<td>46 (0)8 619 4400</td>
<td>46 (0)8 619 4401</td>
</tr>
<tr>
<td>Switzerland (Rotkreuz)</td>
<td>41 (0)41 799 7777</td>
<td>41 (0)41 790 0676</td>
</tr>
<tr>
<td>The Netherlands (Nieuwerkerk a/d IJssel)</td>
<td>31 (0)180 392400</td>
<td>31 (0)180 392409 or 31 (0)180 392499</td>
</tr>
<tr>
<td>United Kingdom (Warrington, Cheshire)</td>
<td>44 (0)1925 825650</td>
<td>44 (0)1925 282502</td>
</tr>
</tbody>
</table>

European Managed Territories (EMT)

<table>
<thead>
<tr>
<th>Region</th>
<th>Telephone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa, English speaking</td>
<td>27 11 478 0411</td>
<td>27 11 478 0349</td>
</tr>
<tr>
<td>Africa, French speaking</td>
<td>33 1 69 59 85 11</td>
<td>33 1 69 59 85 00</td>
</tr>
<tr>
<td>India (New Delhi)</td>
<td>91 11 653 3743</td>
<td>91 11 653 3138</td>
</tr>
<tr>
<td>Poland, Lithuania, Latvia, and Estonia (Warszawa)</td>
<td>48 22 866 4010</td>
<td>48 22 866 4020</td>
</tr>
<tr>
<td>For all other EMT countries not listed (Central and southeast Europe, CIS, Middle East, and West Asia)</td>
<td>44 1925 282481</td>
<td>44 1925 282509</td>
</tr>
</tbody>
</table>

Japan

| Japan (Hacchobori, ChuoKu, Tokyo) | 81 3 5566 6230 | 81 3 5566 6507 |

Latin America

Caribbean countries, Mexico, and Central America	52 55 35 3610	52 55 66 2308
Brazil	0 800 704 9004 or 55 11 5070 9654	55 11 5070 9694/95
Argentina	800 666 0096	55 11 5070 9694/95
Chile	1230 020 9102	55 11 5070 9694/95
Uruguay	0004 055 654	55 11 5070 9694/95
To contact Technical Support through the Applied Biosystems web site:

2. Under the Troubleshooting heading, click Support Request Forms, then select the support region for the product area of interest.

3. In the Personal Assistance form, enter the requested information and your question, then click Ask Us RIGHT NOW.

4. In the Customer Information form, enter the requested information, then click Ask Us RIGHT NOW.

Within 24 to 48 hours, you will receive an e-mail reply to your question from an Applied Biosystems technical expert.
Obtaining Technical Documents

Overview
You can obtain technical documents, such as Applied Biosystems user documents, MSDSs, certificates of analysis, and other related documents for free, 24 hours a day. You can obtain documents:

- By telephone
- Through the Applied Biosystems Technical Support web site

Ordering Documents by Telephone
To order documents by telephone:

1. From the U.S. or Canada, dial **1.800.487.6809**, or from outside the U.S. and Canada, dial **1.858.712.0317**.

2. Follow the voice instructions to order documents (for delivery by fax).

 Note: There is a limit of five documents per fax request.

Obtaining Documents Through the Web Site
To view, download, or order documents through the Applied Biosystems Technical Support web site:

2. Under the Resource Libraries heading, select the type of technical document you want.

3. In the search form, enter or select search criteria, then click Search.

4. In the results screen, do any of the following:
 - Click ![icon] to view a PDF version of the document.
 - Right-click ![icon], then select Save Target As to download a copy of the PDF file.
 - Select the Fax check box, then click Deliver Selected Documents Now to have the document faxed to you.
 - Select the Email check box, then click Deliver Selected Documents Now to have the document (PDF format) e-mailed to you.

 Note: There is a limit of five documents per fax request, but no limit on the number of documents per e-mail request.
Obtaining Customer Training Information

The Applied Biosystems Training web site at www.appliedbiosystems.com/techsupp/training.html provides course descriptions, schedules, and other training-related information.
Assembly Drawings

This appendix contains the following:

- Finding Components .. B-2
- Relative Assembly Locations B-3
Finding Components

Table B-1 provides figure numbers showing the listed component.

Table B-1 Component Diagrams

<table>
<thead>
<tr>
<th>Component</th>
<th>See Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam-steering plates and voltage connections</td>
<td>Figure B-5, Figure B-6</td>
</tr>
<tr>
<td>Einzel lens assembly and voltage connection</td>
<td>Figure B-5, Figure B-6, Figure B-7</td>
</tr>
<tr>
<td>Feedthroughs</td>
<td>Figure B-8</td>
</tr>
<tr>
<td>Flap doors</td>
<td>Figure B-9</td>
</tr>
<tr>
<td>Flap valve block</td>
<td>Figure B-9</td>
</tr>
<tr>
<td>Ion exit aperture</td>
<td>Figure B-5</td>
</tr>
<tr>
<td>Linear actuators</td>
<td>Figure B-9</td>
</tr>
<tr>
<td>Sample loading chamber</td>
<td>Figure B-9</td>
</tr>
<tr>
<td>Stage X, Y table; load position</td>
<td>Figure B-8</td>
</tr>
<tr>
<td>Variable grid</td>
<td>Figure B-6</td>
</tr>
<tr>
<td>X and Y feedthroughs; home and load positions</td>
<td>Figure B-8</td>
</tr>
</tbody>
</table>
Relative Assembly Locations

Figure B-1 Voyager-DE STR Biospectrometry Workstation

Figure B-2 Voyager-DE STR Left Cabinet Rear View
Figure B-3 Voyager-DE STR Center Rear View
Figure B-4 Right Cabinet Rear View

Computer (rear view)

+15 kV power supply

PB100850
Figure B-5 Einzel Lens Assembly (with Variable Voltage and Ground Grids Removed)

Figure B-6 Ion Exit Flange Showing the Einzel Lens Assembly
Figure B-7 Einzel Lens Assembly
Figure B-8 Feedthroughs and Sample Stage

Figure B-9 Sample Loading Chamber
Electronic Drawings

This appendix contains the following:

- Locations of Electronic Components C-2
- Pin 1 Connector Locations C-4
- Interconnects .. C-5
- MALDI Consolidated Control Board C-7
Locations of Electronic Components

Use the following figures to locate electronic components. For more information about Voyager workstation electronics, see the circuit board schematics posted on the MALDI knowledge database and review Chapter 2, Voyager-DE STR Workstation Electronics Theory in this manual.

Figure C-1 Electronics in Left Cabinet (Front View)

Figure C-2 Electronics in the Left Cabinet (Side View)
Locations of Electronic Components

Figure C-3 Electronics in the Right Cabinet (Top Drawer, Rear View)

Figure C-4 Electronics in the Right Cabinet (Bottom Drawer, Front View)

Note: Linear detector and reflector detector power supplies positions may be reversed.
Pin 1 Connector Locations

Use Figure 5 to find the pin 1 positions for commonly used connectors.
Interconnect
MALDI
Consolidated
Control
Board
Figure C-2 Consolidated MALDI Control Board
Figure C-3 Consolidated MALDI Control Board View A

- **J25**: Detector 24 V, switched 24 V, switching, LMG enable, VAC gauge (to workstation)
- **J26**: Linear, flap, load position sensors
- **J23**: Linear and flap actuator solenoid control
- **J22**: Camera, grabber, vent solenoid, foreline solenoid control
- **J15**: Vacuum gauge serial connection (to MGC controller)
- **J1**: Workstation 48 Bit I/O
J28 Laser control
F/Stepper motor
PCBA

J29 Internal laser
attenuator

J30 External laser
attenuator

J31 Internal laser
interlock

R46 3 Hz adjustment
“Old laser trigger”
(Direct monitor at
U39, Pin 3)

J2 Power
ground

J3 From
Opto-trigger
board (detected
pulse)

J4 From YAG
Q-switch
(firing pulse)

J5 External laser
trigger

Figure C-4 Consolidated MALDI Control Board View B
Isolating Components
Using Direct Bus Access

This appendix contains the following:

- Diagnostics Software Direct Bus Access Control Page D-2
- Writing Data Directly Over the Data Bus D-3
- Data Values for Direct Access . D-5
- Setting the Low-Mass Gate Delay Time D-9
- Setting and Disabling Delayed Extraction D-10
- Setting the Timed Ion Selector . D-1
Diagnostics Software Direct Bus Access Control Page

Use the Direct Bus Access control page (Figure D-1) to write data directly to selected components over the data bus. Use this method if you do not want to use the individual component control page—Laser, Voltages and Delays, and DE Switch Box.

![Figure D-1 Direct Bus Access Control Page](image)

You cannot enable high-voltage or the Low Mass Gate using direct bus access. With direct bus access, you can only set the output voltage at the DACs and the Low Mass Gate value.
Writing Data Directly Over the Data Bus

Before you write data to any component, make sure you have appropriately connected or disconnected the high-voltage lines and connected meter probes or voltmeters to the appropriate DACs.

WARNING

ELECTRICAL SHOCK HAZARD. Safe operating procedures and proper use of equipment are the responsibility of the authorized and qualified service person. Precautions must be taken to protect against possible serious and/or fatal bodily injury.

To write data directly to a component:

1. Select the component you want to write to from the **Address** dropdown menu ([**Figure D-2**](#)).

 ![Figure D-2 Direct Bus Access Address Menu](image)

 Figure D-2 Direct Bus Access Address Menu

2. Select the format of the data ([**Figure D-3**](#)) by clicking the appropriate button under **Format**.

 ![Figure D-3 Direct Bus Access Format Menu](image)

 Figure D-3 Direct Bus Access Format Menu

Note: When writing to the Control Register, it’s often easier to enter a decimal or hexadecimal value initially, then switch to binary format to set or clear specific bits.
3. Enter a 16-bit data value in the Data Value field. The value you enter depends on the component you are programming. For details, see Table D-1 on page D-5.

When you write directly to the Control Register, you must write the entire sixteen data bits even if you want to change only some of the register bit values.

Only the corresponding DACs output voltages are detectable with a voltmeter when you set their voltages without enabling high-voltage. (DAC voltages are shown in Table D-2 on page D-8.)

4. Click [Write] to transmit the data over the data bus.
Data Values for Direct Access

Table D-1 lists each of the components that you can write to directly and describes their corresponding sixteen data bits.

Table D-1 Direct Access Data Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Parameter</th>
<th>Bit values</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Source DAC)</td>
<td>Voltages from 0 to 30 kV.</td>
<td>Values written correspond to voltages 0 to 10 V at the DAC. For details, see Table D-2 on page D-8.</td>
</tr>
<tr>
<td>1 (Mirror DAC)</td>
<td>Voltages from 0 to 30 kV.</td>
<td>Values written correspond to voltages 0 to 10 V at the DAC. For details, see Table D-2 on page D-8.</td>
</tr>
<tr>
<td>2 (Grid DAC)</td>
<td>Voltages from 0 to 30 kV.</td>
<td>Values written correspond to voltages 0 to 10 V at the DAC. For details, see Table D-2 on page D-8.</td>
</tr>
<tr>
<td>3 (Beam Guide DAC)</td>
<td>Voltages from 0 to 30 kV.</td>
<td>Ignored for Voyager-DE STR workstation with serial number 4154 and later.</td>
</tr>
<tr>
<td>4 (Control Register) (high-frequency counter and ion source pulser)</td>
<td>TIS frequency select</td>
<td>Bits 0-2. Value is: 000 = 10 ns (100 MHz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE and TIS counter enable Bit 3. Values are: 0 = disabled 1 = enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIS high-voltage enable Bit 4. Values are: 0 = disabled 1 = enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power level Bit 5. Ignored for Voyager-DE STR workstation. Values for other models are: 0 = low 1 = normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NA Bit 6. Not used. Set to 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE mode enable Bit 7. Values are: 0 = disabled 1 = enabled</td>
</tr>
</tbody>
</table>
Table D-1 Direct Access Data Values (continued)

<table>
<thead>
<tr>
<th>Component</th>
<th>Parameter</th>
<th>Bit values</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (Control Register, continued)</td>
<td>DE mode select</td>
<td>Bits 8-10. Each bit represents a relay: bit 8/relay 1, bit 9/relay 2, and bit 10/relay 3. Bit combinations set the DE switch box mode. Values are: 110 = DE negative ion mode 101 = Non-DE mode (positive and negative ion) 000 = DE positive ion mode</td>
</tr>
<tr>
<td>NA</td>
<td>Bits 11-14. Not used. Set to 0.</td>
<td></td>
</tr>
<tr>
<td>Low Mass Gate timer start/end</td>
<td>Bit 15. Determines whether the value is the timer start or end time: 0 = start 1 = end</td>
<td></td>
</tr>
<tr>
<td>5 (LMG delay)</td>
<td>Low Mass Gate delay time</td>
<td>Bits 0-7 represent 8,000 to 65,000 ns. Values entered represent the (target delay time ns) – 8 ns/222 ns. Values are: Dec = 0 to 255 Hex = 00 to FF Bin = xxxx xxxx 0000 0000 to xxxx xxxx 1111 1111 Where 0 = 8000 and 255 = 65000. You must interpolate all values between the min/max. Bits 8-15 are ignored.</td>
</tr>
</tbody>
</table>
Table D-2 Direct Access Data Values (continued)

<table>
<thead>
<tr>
<th>Component</th>
<th>Parameter</th>
<th>Bit values</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (DE delay)</td>
<td>Delayed Extraction delay time</td>
<td>Bits 0-14 represent 10 to 32,768 ns. Values entered represent the target time divided by the TIS clock frequency in ns—10 ns. Bit 15 selects start/end time: 0 = start 1 = end Valid start times (correspond to values ranging from 10 to 32,767) are: Dec = 0 to 32767 Hex = 0000 to 7FFF Bin = 0000 0000 0000 0000 to 0111 1111 1111 1111 Where 0 = 10 ns and 32767 = 327670 ns at the DAC. You must interpolate all values between the min/max. Valid end times (correspond to values ranging from 10 to 32,768) are: Dec = 32768 to 65535 Hex = 8000 to FFFF Bin = 1000 0000 0000 0000 to 1111 1111 1111 1111 Where 32768 = 10 ns and 65535 = 327680 ns at the DAC. You must interpolate all values between the min/max.</td>
</tr>
<tr>
<td>7 (TIS delay)</td>
<td>Timed Ion Selector delay time</td>
<td>Bits 0-14 represent 10 to 32,768 ns. Values entered represent the: (target time/ TIS clock frequency ns)—10 ns. Bit 15. Sets start/end time: 0 = start 1 = end Valid start times* (correspond to values from 10 to 32767) are: Dec = 0 to 32767 Hex = 0000 to 7FFF Bin = 0000 0000 0000 0000 to 0111 1111 1111 xxxx Where 0 = 10 ns and 32767 = 327670 ns at the DAC. You must interpolate all values between the min/max. Valid end times* (correspond to values ranging from 10 to 32768) are: Dec = 32768 to 65535 Hex = 8000 to FFFF Bin = 1000 0000 0000 0000 to 1111 1111 1111 xxxx Where 32768 = 10 ns and 65535 = 327680 ns at the DAC. You must interpolate all values between the min/max.</td>
</tr>
</tbody>
</table>

* Not all values in the range are valid; do not write all 1s to the low four bits of the data value.

Table D-2 lists the voltages and the data bits that program them.
<table>
<thead>
<tr>
<th>Component Voltage Output (kV)</th>
<th>DAC Output Voltage</th>
<th>Hex</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3333</td>
<td>0888</td>
<td>0000 1000 1000 1000</td>
<td>2184</td>
</tr>
<tr>
<td>2</td>
<td>0.6666</td>
<td>1111</td>
<td>0001 0001 0001 0001</td>
<td>4369</td>
</tr>
<tr>
<td>3</td>
<td>0.9999</td>
<td>1999</td>
<td>0001 1001 1001 1001</td>
<td>6553</td>
</tr>
<tr>
<td>4</td>
<td>1.332</td>
<td>2222</td>
<td>0010 0010 0010 0010</td>
<td>8738</td>
</tr>
<tr>
<td>5</td>
<td>1.665</td>
<td>2AAA</td>
<td>0010 1010 1010 1010</td>
<td>10922</td>
</tr>
<tr>
<td>6</td>
<td>1.998</td>
<td>3333</td>
<td>0011 0011 0011 0011</td>
<td>13107</td>
</tr>
<tr>
<td>7</td>
<td>2.331</td>
<td>3BBB</td>
<td>0011 1011 1011 1011</td>
<td>15291</td>
</tr>
<tr>
<td>8</td>
<td>2.664</td>
<td>4444</td>
<td>0100 0100 0100 0100</td>
<td>17476</td>
</tr>
<tr>
<td>9</td>
<td>2.997</td>
<td>4CCC</td>
<td>0100 1100 1100 1100</td>
<td>19660</td>
</tr>
<tr>
<td>10</td>
<td>3.33</td>
<td>5555</td>
<td>0101 0101 0101 0101</td>
<td>21845</td>
</tr>
<tr>
<td>11</td>
<td>3.663</td>
<td>5DDD</td>
<td>0101 1101 1101 1101</td>
<td>24029</td>
</tr>
<tr>
<td>12</td>
<td>3.994</td>
<td>6666</td>
<td>0110 0110 0110 0110</td>
<td>26214</td>
</tr>
<tr>
<td>13</td>
<td>4.329</td>
<td>6EEE</td>
<td>0110 1110 1110 1110</td>
<td>28398</td>
</tr>
<tr>
<td>14</td>
<td>4.662</td>
<td>7777</td>
<td>0111 0111 0111 0111</td>
<td>30583</td>
</tr>
<tr>
<td>15</td>
<td>4.995</td>
<td>7FFF</td>
<td>0111 1111 1111 1111</td>
<td>32767</td>
</tr>
<tr>
<td>16</td>
<td>5.328</td>
<td>8888</td>
<td>1000 1000 1000 1000</td>
<td>34952</td>
</tr>
<tr>
<td>17</td>
<td>5.661</td>
<td>9110</td>
<td>1001 0001 0001 0000</td>
<td>37136</td>
</tr>
<tr>
<td>18</td>
<td>5.994</td>
<td>9999</td>
<td>1001 1001 1001 1001</td>
<td>39321</td>
</tr>
<tr>
<td>19</td>
<td>6.327</td>
<td>A221</td>
<td>1010 0010 0010 0001</td>
<td>41505</td>
</tr>
<tr>
<td>20</td>
<td>6.66</td>
<td>AAAA</td>
<td>1010 1010 1010 1010</td>
<td>43690</td>
</tr>
<tr>
<td>21</td>
<td>6.993</td>
<td>B332</td>
<td>1011 0011 0011 0010</td>
<td>45874</td>
</tr>
<tr>
<td>22</td>
<td>7.326</td>
<td>BBBB</td>
<td>1011 1011 1011 1011</td>
<td>48059</td>
</tr>
<tr>
<td>23</td>
<td>7.659</td>
<td>C443</td>
<td>1100 0100 0100 0011</td>
<td>50243</td>
</tr>
<tr>
<td>24</td>
<td>7.992</td>
<td>CCCC</td>
<td>1100 1100 1100 1100</td>
<td>52428</td>
</tr>
<tr>
<td>25</td>
<td>8.325</td>
<td>D554</td>
<td>1101 0101 0101 0100</td>
<td>54612</td>
</tr>
<tr>
<td>26</td>
<td>8.658</td>
<td>DDDD</td>
<td>1101 1101 1101 1101</td>
<td>56797</td>
</tr>
<tr>
<td>27</td>
<td>8.991</td>
<td>E665</td>
<td>1110 0110 0110 0101</td>
<td>58981</td>
</tr>
<tr>
<td>28</td>
<td>9.324</td>
<td>EEEE</td>
<td>1110 1110 1110 1110</td>
<td>61166</td>
</tr>
<tr>
<td>29</td>
<td>9.657</td>
<td>F776</td>
<td>1111 0111 0111 0110</td>
<td>63350</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>FFFF</td>
<td>1111 1111 1111 1111</td>
<td>65535</td>
</tr>
</tbody>
</table>
Setting the Low-Mass Gate Delay Time

To set the low-mass gate delay time, you write a delay time. You then have the optional to write to the Control register to specify whether the value is the start or end delay time. To set delay times:

1. From the Address pulldown menu, select 5 (LMG delay).
2. Enter an 8-bit value in the Data Value text field for the start delay time.
 Values range from 0 to 255 (decimal) and represent 8,000 to 65,000 ns.
3. Click Write.

 The remaining steps are optional. Because you cannot enable the Low Mass Gate timers, it makes no difference whether the delay time you write is the start or end time.
4. From the Address pulldown menu, select 4 (Control Register).
5. Enter a 16-bit value in Data Value text field.
 Clear bit 15 (LMG enable) to specify that the data value previously written is the start time for the delay. The remaining bits do not affect the Low Mass Gate circuitry.
 Remember, you must write the entire sixteen bits of the control register, so enter a value that sets all components the control register configures (including TIS and DE parameters) appropriately.
6. Click Write.
7. Repeat steps 1 through 6, but specify the end delay time in step 5 by setting bit 15 to 1.
Setting and Disabling Delayed Extraction

Setting Delayed Extraction

To set and invoke delayed extraction, you

- Set the start and end times for the delay
- Write to the control register to select and enable DE mode
- Write to the control register to enable the DE counter, which starts the DE timer counters

The procedure is as follows:

1. From the Address pulldown menu, select 6 (DE delay).
2. Enter a 16-bit value in the Data Value text field for the start delay time. Values range from 0 to 32,767 (decimal) and represent 0 to 327,670 ns at the DAC.
3. Click Write.
4. Enter a 16-bit value in the Data Value text field for the end delay time. The most significant value (MSB) is a select bit, defined in the table below:

<table>
<thead>
<tr>
<th>Data Value MSB</th>
<th>Represents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Start</td>
</tr>
<tr>
<td>1</td>
<td>End</td>
</tr>
</tbody>
</table>

Values range from 32,768 to 65,535 (decimal) and represent 0 to 327,680 ns at the DAC.
5. Click Write.
6. From the Address pulldown menu, select 4 (Control Register).
7. Enter a 16-bit value in the Data Value text field.
 - Set bit 3 (DE counter enable) to enable the counter
 - Set bit 7 (DE mode enable) to enable DE mode
 - Clear bits 8 through 10 (DE mode select) for positive ion mode, or set them to 110 for negative ion mode.

Remember, you must write the entire sixteen bits of the control register, so enter a value that sets all components the control register configures (including TIS and LMG parameters) appropriately.
8. Click Write.
Disabling Delayed Extraction

To disable delayed extraction, you must disable the DE counter, select non-DE mode, and disable DE mode:

1. From the Address pulldown menu, select 4 (Control Register).
2. Enter a 16-bit value in the Data Value text field.
 - Clear bit 3 (DE counter enable) to disable the counter.
 - Clear bit 7 (DE mode enable) to disable DE mode.
 - Set bits 8 through 10 (DE mode select) to 101 for non-DE mode (positive or negative polarity).

Remember, you must write the entire sixteen bits of the control register, so enter a value that sets all components the control register configures (including TIS and LMG parameters) appropriately.

3. Click .
Setting the Timed Ion Selector

To set up and invoke the Timed Ion Selector, you:

- Set the start and end times for the delay.
- Write to the Control register to set the TIS frequency.
- Enable TIS high-voltage. (For non-STR systems, you also set the TIS power level.)
- Enable the TIS counter.

To set the TIS counter:

1. From the Address pulldown menu, select \textbf{7 (TIS delay)}.
2. Enter a 16-bit value in the Data Value text field for the start delay time. Values range from 0 to 32,767 (decimal) and represent 0 to 327,670 ns at the DAC.
 However, because of a limitation of the pulse generator, you cannot write all 1s to the low four bits of the data value.
3. Click \textit{Write}.
4. Enter a 16-bit value in the Data Value text field for the end delay time. Values range from 32,768 to 65,535 (decimal) and represent 0 to 327,670 ns at the DAC.
 Although values range from 32,768 to 65,535, a limitation of the pulse generator prevents you from writing all 1s to the low four bits of the data value.
5. Click \textit{Write}.
6. From the Address pulldown menu, select \textbf{4 (Control Register)}.
7. Enter a 16-bit value in the Data Value text field.
 - Clear bits 2-0 (TIS frequency select) to select a frequency of 100 MHz.
 - Set bit 4 (TIS high-voltage enable) to enable high-voltage.
 - Set bit 3 (TIS counter enable) to enable the counter, which starts the TIS timer counters and activates the Timed Ion Selector.
 Remember, you must write the entire sixteen bits of the Control register, so enter a value that sets all components the Control register configures (including DE and LMG parameters) appropriately.
8. Click \textit{Write}.
Index

Numerics

100-MHz clock 2-64
16-bit Diagnostics software
to test high-voltage cable 5-30
18-MHz clock and divide-by-four 2-17
32-bit Diagnostics software
see Diagnostics software
48-bit I/O board 2-46
connectors 2-46
functions 2-46
LEDs 2-47
location 2-46
overview 2-46
theory 2-46

AC Distribution board
block diagram 2-7
connection to auto-transformer 2-5
fuses 2-5, 2-7
J13 mirror turbo controller 3-6
J14 source turbo controller 3-6
LEDs 2-5, 2-7
line voltages 2-5
location 2-5
output connectors 2-6
overview 2-5
stepper motor feedthroughs
interconnect 5-27
theory 2-5
Accessing field service resources A-2
Acqiris digitizer 1-19
Acquisition
troubleshooting 5-32
Acquisition Error 6-9
Actuators
see Linear actuators
Address Decoder 2-17, 2-64
Adjusting
attenuator 5-41
extend orifice valve 5-25
grabber extension speed 5-25
microswitches 5-29
nitrogen laser repetition rate
1-13, 5-39
nitrogen laser trigger 1-13
TIS voltage 5-42
Air compressor
Load position fails to turn on 5-20
loss of operating pressure for actuators and valves
5-20
triggered by load switches 5-19
Aligning
sample stage 5-13
source pedestal 5-24
AT Limit Feedback Circuit 2-31
ATM multigauge controller key 5-46, 5-52
Attenuator, see Laser attenuator
Auto-transformer
connection to AC Distribution board 2-5

B

BA gauge
see also Ion gauge
degassing 5-54
E09 error 6-13
high reading 6-14
pressure range 5-46
range 5-45
shut down 6-14
status bar display 4-11
Baud rate
multigauge controller-to-Voyager 5-50
Bayard-Alpert gauge
see also Ion gauge
Beam guide wire 1-15
Beam, laser
see Laser beam path, nitrogen
Beam-steering board 2-33
connectors 2-35
Input 2-35
input 2-35
location 2-34
output 2-35
overview 2-33
power 2-35
switches 2-35
test points 2-35
theory 2-34
Beam-steering plates, description 5-38
Bleed screw
see Extend orifice valve
Bradbury-Nielson gate 1-15, 5-42

This Document Contains CONFIDENTIAL Material of Applied Biosystems
For Internal Use Only - No Unauthorized Copying Permitted
Cable
 for nitrogen laser external trigger 1-13
 high-voltage, testing 5-30, 5-31
Calculating
 DAC board grid expected output voltage 5-32
 calculating DAC board source expected output voltage 5-32
Calibrating
 load position
 thermocouple (TC2) gauge 5-52
Camera control page 5-11, 5-43
 see also Diagnostics software 4-6
Certificates of analysis
 obtaining A-10
CHAN 5-45
CHAN multigauge controller key 5-46
 calibrating TC2 using 5-52
Check Control Wiring Test
 see DE switch box control page
CID 1-3
Circuit board connectors
 48-bit I/O 2-46
 beam-steering 2-35
 DAC 2-10
 DC distribution 2-12
 flight tube 2-62
 Pulse Generator PCA 2-65
 Timed Ion Selector 2-30
 TTL Output Opto-trigger 2-31
 voltage divider box (einzell lens) 2-45
Circuit boards (continued)
 TTL output opto-trigger 2-31
 voltage divider box (einzell lens) 2-45
Collision cell
 description 1-9
Com Port 2 settings
 parity 5-50, 5-51
 resetting 5-50
 verifying 5-48, 5-50
COMM fault 5-16
Communication failure
 diagnostics software and ion gauge 5-16
 overriding COMM fault 5-16
Compressor relay and diodes 2-6
Computer system 1-19
 Ethernet adapter card 1-19
 minimum requirements 1-19
 screen saver interference 1-19
 software shipped with 1-21
 sound card interference 1-19
 troubleshooting tables 6-9
Connectors
 see also Circuit board connectors and LEDs 2-8
Control pages, Diagnostics software
 Camera 4-6, 5-11, 5-43
 DE switch box 4-9, 5-36
 Direct Bus Access 4-10, D-2
 function summary 4-6
 Laser 4-7, 5-39
 Mechanical 4-6, 5-12, 5-16, 5-31
 overview 4-5
 resources summary 4-5
 troubleshooting summary 5-2
 Voltagess-Delays 4-8, 5-33, 5-43
 X-Y Table 4-9, 5-19
Control stick description 1-2
Counters 2-17, 2-64
Customer training information A-11
DAC setting voltages using diagnostics software 5-34

DAC board calculating grid expected output voltage 5-32
calculating source expected output voltage 5-32
connectors 2-10
location 2-9
theory 2-9

DAC voltages, ramping 5-33

Data bus setting values in binary, decimal, or hexadecimal D-3
writing to D-3

Data bus control page entering values D-4

Data Explorer Software function 1-21

Database, MALDI knowledge 5-6, A-3

DC Distribution board connectors 2-12
LEDs 2-14
location 2-11
overview 2-11
test points 2-13
theory 2-11

DE switch box component of source 5-18
components 2-37
connectors 2-42
firmware configuration 2-43
input/output 2-42
LEDs 2-43
location 2-37
overview 2-37
power needed 2-42
safety warning 2-37
triggered by DE pulse generator 2-50
types of and part numbers 5-36

DE switch box control page before beginning the Check Control Wiring Test 5-37
checking high voltages with 5-36
function 4-9
running the Check Control Wiring Test 5-37
switch box types 5-36
test not available 5-36

DEGAS multigauge controller key 5-46

Degassing ion gauges 5-54
see DEGAS multigauge controller key 5-54

Delayed Extraction see also DE switch box
see also DE switch box control page
delay time clock cycle 5-35
disabling D-11
enabling using diagnostics software 5-33
setting start delay time using diagnostics software 5-33
setting start/end delay times D-10
timing signal, pulse delay 1-14

Delayed-Extraction ion source preliminary troubleshooting 5-32

Delayed-extraction ion source troubleshooting 5-32
verifying source voltage 5-32

Detector
Linear detector 1-17
reflector 1-18

Detector filter bias board, LMG 2-25

Diagnostics software
accessing 4-3
and the Instrument Control Panel 1-21, 4-2
and the Instrument Hardware Controller 1-21, 4-2
before accessing 4-3
before setting output voltages and Low-Mass Gate D-3
Camera control page 4-6, 5-11, 5-43
compatible Voyager software versions 4-2
control page summary 4-6
data bus 16-bit values D-5
DE switch box control page 4-9, 5-36
Direct Bus Access control page 4-10, D-2
for NT 1-21, 4-2
interface 3-1, 4-1
Laser control page 5-38
list of control pages 4-6
Mechanical control page 5-11
no pressure requirement 1-21
overview 4-2
overwriting load position in the NT Registry 5-20
Sample Stage control 5-18
setting data bus values in binary, decimal, or hexadecimal D-3
(continued)
Diagnostics software (continued)
 setting laser attenuation with 5-41
 setting Linear or Reflector mode 5-31
 setting output voltages and Low-Mass Gate 4-10, D-2
 status bar indicators described 4-11
 testing high voltages 5-36
 uses of 4-2
 Voltages-Delays control page 5-33, 5-35, 5-43
 writing to data bus with D-2
 X-Y Table control page 5-18

Digitizer
 Acqiris 1-19
 description function 1-19
 LeCroy 1-19
 minimum 2 GHz 1-19
 supported 1-19
 Tektronix 1-19
 timing signal 1-14
 triggered by DE pulse generator 2-50

Direct Bus Access control page
 see also Diagnostics software
 comparing output to set values D-4
 data bus 16-bit values D-5
 disabling Delayed-Extraction format of values D-3
 function 4-10
 overview D-2
 procedure for writing to the data bus setting Delayed-Extraction start/end times D-10
 setting Low-Mass Gate delay time D-9
 setting Timed Ion Selector start/end times D-12

Doors
 see flap doors
 Down key, multigauge controller key 5-47
 Drift-Tube, see Flight tube 2-60

E

E09 multigauge controller error 6-14
Einzel lens
 see also Voltage Divider Box 2-44
 description 1-10
Electrical shock warning 5-38
Electromagnetic compatibility compliance xiii

Electronics
 see Voyager electronics
E-mail
 contacting technical support A-5
EMC standards xiii
EMIS multigauge controller key
 primary function 5-45, 5-46
 secondary function 5-45, 5-46
Errors
 acquisition error 6-9
 high voltage interlock 6-10
 Ion gauge not responding 6-15
 vacuum initialization 6-15
Extend orifice valve
 adjustment range for Linear 1 actuator 5-25
 location on Linear 1 actuator 5-24

F

F multigauge controller key 5-47
Fan, nitrogen laser 1-13
Field Service in North America, contacting A-5
Field service resources, accessing A-2
Firing the laser 5-39
Flap Door 1
 see also Flap doors
 conditions to meet before opening/closing 5-9
 description 1-7
Flap Door 2
 see also Flap doors
 conditions to meet before opening/closing 5-9
 description 1-7
Flap doors
 conditions to meet before opening/closing 5-9
 diagnosing using Mechanical control page 5-11
 error message in Mechanical control page 5-16
 indicators 5-11
 keeping stationary when testing 5-13
 loss of operating pressure 5-20
 manually opening/closing 5-12
 operating pressure 5-20
 warning message displayed in Mechanical control page 5-16
 Warning messages Mechanical control page 5-16
Flap valves
 description 1-7
Flat signal 6-2, 6-3
Flight tube
 description 1-15
 function 1-15
Flight tube power supply
 input 2-61
 power 2-61
Flight-tube power supply
 output 2-61
 theory 2-61
Flowchart
 Source troubleshooting 5-21
Fore pump
 failure 6-14
 function 5-44
 pressure range 5-44
 typical pressure 5-44
Foreline valve 1
 conditions to meet before opening or closing 5-9, 5-10
 relative location in the vacuum system 5-8
Foreline valve 2
 conditions to meet before opening or closing 5-10
 relative location in the vacuum system 5-8
 TC2 pressure to meet before opening 5-10
Foreline valves
 conditions to meet before opening or closing 5-10
 error message displayed in Mechanical control page 5-17
 Mechanical control page error and warning messages 5-17
 warning message displayed in Mechanical control page 5-17
Fuses
 AC Distribution board 2-5, 2-7
Fusing, F1A,B Through F15A,B 2-5

G
Grabber
 and Linear 1 actuator 5-12
 and sample plate 5-12
 and source pedestal alignment 5-24
 conditions to meet before powering off 5-11
 error message displayed in Mechanical control page 5-17
 fails to contact sample plate 6-8
 fails to hold sample plate 6-4
 fails to pull sample plate during ejection 6-6
 keeping stationary when testing 5-13
 Mechanical control page error and warning messages 5-17
 powering on/off 5-12
 remains powered on 5-12
 testing alignment 5-13
 voltage 5-13
 warning message displayed in Mechanical control page 5-17
 when to replace 5-24
GRAMS software 1-21
Grid DAC
 incorrect voltage 6-10
Grid voltage
 and source voltage 5-34
 diagnostics software values 5-34
 enabling using diagnostics software 5-34
 setting using diagnostics software 5-33, 5-34
 testing high voltage 5-36
Grids in source 1-9
Grids in source, measuring voltage 5-30
Guide wire voltage
 enabling using diagnostics software 5-34
 invalid in some systems 5-34
 setting using diagnostics software 5-33, 5-34
 testing using diagnostics software 5-36
High Current detector, LMG 2-25
High voltage
- direct measurement 5-30
- disabling 5-42
- indirect measurement 5-30
- Measuring at sample plate and grid off 5-30
- status bar display 4-11
High voltage interlock error possible causes 6-10
High voltage, source
- I pot setting of 3 turns ccw 5-32
- troubleshooting 5-32
- when to replace power supply 5-32
High voltages
- powering on/off using diagnostics software 5-34
- verifying 5-34
High-current detector
- components of 1-17
- description 1-17
High-voltage cable
- testing internal 5-30
- testing with 32-bit Diagnostics Software 5-31
- testing with system under vacuum 5-30
High-voltage cable using 16-bit Diagnostics Software to test 5-30
High-voltage cables 5-18
High-voltage power supplies, nitrogen laser 1-12
Home position
- see Microswitch
- see Sample stage
How to use this guide xvii

I

I pot
- source voltage power supply setting of 3 turns ccw 5-32
ICP, see Instrument Control Panel
IHC, see Instrument Hardware Controller
Init fault
- overriding warning 5-16
Instrument Hardware Controller
- function 1-21
- restarting 4-4
Intensity, signal
- definition 1-20
Interconnect Diagram 2-3
Interlocks
- avoiding errors and warnings 5-9
- status bar display 4-11
Interlocks defeated LED, nitrogen laser 1-12
Interlocks, internal
- error message 5-9
- hazard control 5-9
- potential damage if compromised 5-9
- prerequisites 5-9
- warning message 5-9
Internal high-voltage cable
- see high-voltage cable
Internal/external trigger adjustment, nitrogen laser 1-13
Ion beam
- path in linear mode 1-16
Ion gauge
- see also BA gauge 5-53
- BA gauge 5-45
- Bayard-Alpert 5-45
- components 5-53
- conditions damaging to 5-16
- conditions potential damaging to 5-16
- factors affecting accuracy 5-54
- function 5-45, 5-53
- ion emission and pressure 5-54
- pressure bursts shuts down 5-10
- process when faults during a load/eject cycle 5-15
- range 5-45
- restarting 5-10
- restarting after a fault 5-16
- safely ignoring 5-15
- theory 5-54
- shuts down due to over pressure 5-15
- when irrelevant 5-15
Ion Gauge Controller not responding error possible causes 6-15
Ion source
- see Source
J
Joy stick
 see Control stick

K
KBAUD multigauge controller key
 secondary function 5-46
Key control, nitrogen laser 1-12
Knowledge database, MALDI 5-6, A-3

L
Label 2-6
Laser
 see also NdYAG 1-11
 adjusting the attenuator 5-38
 class rating 1-11
 diagnosing using Laser control page 5-38
 emission danger 1-11
 external mode warning 5-38
 firing 5-38, 5-39
 firing prevented 5-40
 optional laser, Voyager serial numbers compatible with 1-11
 potential eye damage 5-38
 re-initializing 5-38
 reinitializing process 5-40
 safety information xiv, 1-4, 3-2
 setting repetition rate 5-39, 5-40
 status bar display 4-11
 stop firing 5-40
 stops firing after first pulse 5-40
 UV radiation warning xi
 Laser
 see also Nitrogen laser 1-11
 Laser attenuator
 adjusting 5-41
 home position 5-41
 home position improperly detected 5-41
 home position reflective tape 5-41
 homing 5-40
 keyboard control 5-40
 optical density 5-41
 opto-couple device 5-41
 resetting to Registry file values 5-40
 setting using diagnostics software 5-41
 stepper motor 5-40
 theory of operation 5-41
 Laser beam path
 nitrogen 1-14
 Laser control page 5-38
 see also Diagnostics software
 Laser control page, function 4-7
 Laser emissions, ratings 1-11
 Laser hazard warning 1-4, 1-11, 3-2, 5-21, 5-38, 6-9
 cooling fan 1-13
 laser charged in external trigger mode 1-4, 1-13, 3-2, 5-38
 Laser intensity, nitrogen
 energy striking the sample 1-14
 Laser Pulse Detection Circuit 2-31
 Laser trigger
 malfunctioning 6-9
 LeCroy digitizer 1-19
 LEDs 2-5, 2-47
 48-bit I/O 2-47
 AC Distribution board 2-5, 2-7
 MALDI control board 6-18
 Voyager workstation top panel 6-18
 Limit switches, see Microswitches 5-19
 Line voltages
 AC Distribution board 2-5
 Linear 1 actuator
 bleed screw 5-24
 conditions to meet before extending or retracting 5-10
 description 1-7
 extend orifice valve 5-24
 extend orifice valve adjustment range 5-25
 see also Linear actuators 5-11
 Linear 2 actuator
 conditions to meet before extending or retracting 5-11
 description 1-7
 Linear actuators
 conditions to meet before extending or retracting 5-10
 diagnosing using Mechanical control page 5-11
 error message displayed in Mechanical control page 5-11
 extending or retracting 5-12
 function 1-7
 Home microswitch 5-29
 indicators 5-11
(continued)
Linear actuators (continued)
keeping stationary when testing 5-13
Load microswitch 5-29
loss of operating pressure 5-20
Mechanical control page error and warning messages 5-17
microswitches 5-29
operating pressure 5-20
troubleshooting 5-29
warning message displayed in Mechanical control page 5-17

Linear detector
description 1-17
function 1-16, 5-31
high current 1-17
within mirror chamber 1-16, 5-31

Linear mode
allowing high-voltage supply to discharge 5-34
beam path 1-16
compared to reflector mode 5-31
delay when changing from reflector mode 5-34
detector 1-17
length of beam path 1-16
mirror voltage and Timed Ion Selector delay time invalid 5-31
sensitivity relative to other modes 1-16
when to use 1-16

Linear 1 actuator
and grabber 5-12
Load and eject cycles 5-13
aborting 5-15
backtracking to a safe state 5-15
conditions to avoid 5-15
continuing despite gauge errors and high pressures 5-15
determining current operation 5-14
diagnosing using Mechanical control page 5-11
ending before cycle completes 5-15
initiating 5-14
initiating multiple 5-14
monitoring 5-14
multiple iterations 5-11
order of operations 5-14
overriding vacuum faults 5-15
running using Mechanical control page 5-11
single iteration 5-11
status display 5-14
stop prematurely 5-15

Load and Latch signals 2-9
Load position
see Microswitch
see Sample stage
not reached although compressor energized 5-29

Low-Mass Gate
delay time clock cycle 5-35
enabling using diagnostics software 5-33
function 1-16
setting delay time D-9
setting start delay time 5-33
timing signal 1-14

Low-Mass Gate Delay Timer board
collectors 2-18
diodes 2-19
Drivers 2-17
drivers 2-17
functions 2-15
headers 2-18
input/output signals 2-18
jumpers 2-18
location 2-15
overview 2-15
regulators 2-18
start register 2-17
switches 2-18, 2-19
test points 2-18, 2-19
theory 2-15

Low-Mass Gate Delay timer board
triggered by DE pulse generator 2-50

Low-Mass Gate driver boxes
configurations 2-23
connectors 2-25
detector filter bias board 2-25
input/output 2-25
negative 2-20
positive 2-20
power 2-25
pulse diagrams 2-24
switches 2-23
types of 2-23

Low-voltage power supplies, nitrogen laser 1-12
M

Main source chamber
diagram of 1-8
diagram of typical voltages 1-8
Over pressure vacuum fault 5-15
overview 1-8
performing load/eject cycles 5-13
tools to troubleshooting 5-23
typical voltages applied to 1-8

MALDI Control board
bus 2-48
connectors 2-52
functions 2-47
input/output 2-50
LEDs 2-55
location 2-47
overview 2-47
pots 2-53
simplified drawing 2-58
switches 2-57
test points 2-53

MALDI knowledge database 5-6, A-3
MALDI product support web site 5-6, A-3
MALDI-TOF definition 1-2

Mass spectrometer
see also Voyager-DE STR Biospectrometry
Workstation
components of Voyager-DE STR
overview 1-6
diagram of Voyager-DE STR
components 1-6, 5-18
parts of, Voyager-DE STR 1-2, 1-6

Mass standards kit 1-3

Mechanical control page
4-6, 5-11, 5-13
see also Diagnostics software 4-6
error messages 5-16
function 4-6
warning messages 5-16

Microchannel plate
in linear detector 1-17

Microswitches
adjusting 5-29
feedthrough limit switches 5-19
Home 5-29
Home (0,0) position 5-19
linear actuators 5-29
Load 5-29
load position not tripping 5-21
load position, linear actuator, and flap door interaction 5-20
Load region 5-19
(continued)

Microswitches (continued)
Load region typical counts 5-19
shorting to run the air compressor 5-19
troubleshooting 5-29

Mirror
see reflector

Mirror chamber
components within 1-16, 5-31
function 1-16

Mirror turbo controller
J13 AC Distribution board 3-6

Mirror voltage
and mode of operation 5-34
diagnostics software values 5-34
enabling using diagnostics software 5-34
setting using diagnostics software 5-33, 5-34
testing high voltage 5-36

MSDSs, obtaining A-10

Multigauge Controller
description 5-45

Multigauge controller
baud rate 5-48, 5-50
baud rate required 5-47
Com Port 3 5-48, 5-50
functions 5-45
fuse LED location 5-47
fuses 5-47
gauges monitored 5-45
key functions 5-45
keys, accessing second functions with F key 5-45
location 5-45
overview 5-45
parity 5-48, 5-50
parity setting 5-50
power source 5-47
requirements 5-47
RS232 connection to Voyager 5-48, 5-50
uses 5-45
using to calibrate the thermocouple gauge 5-52

Multigauge controller error code
E02 6-16, 6-17
E03 6-16
E04 6-16
E05 6-14, 6-17
E08 6-17
E09 6-13, 6-14, 6-17
E14 6-17
overview 5-55

This Document Contains CONFIDENTIAL Material of Applied Biosystems
For Internal Use Only - No Unauthorized Copying Permitted
NdYAG laser
- 355 nm wavelength: 1-11
- Voyager serial numbers compatible with: 1-11

Negative drive assembly: 2-20

Nitrogen laser
- 337.1 nm wavelength: 1-11
- Attenuation of beam: 1-14, 5-40
- Beam path: 1-14
- Beam path through Voyager-DE STR: 1-14
- Beam splitter: 1-14
- Component functions: 1-12
- Components of: 5-38
- Control panel diagram: 1-12
- Controls: 1-12
- Energy striking the sample: 1-14
- External trigger connection: 1-13
- External trigger setting: 1-4, 1-11, 1-13, 3-2, 5-38
- Fan: 1-13
- High-voltage power supplies: 1-12
- Interlocks Defeated LED: 1-12
- Internal/External Trigger Adjustment: 1-13
- Key Control: 1-12
- Low-voltage power supplies: 1-12
- Plasma cartridge: 1-12
- Plasma cartridge replacement: 1-12, 5-38
- Power receptacle: 1-12
- Pulse width: 1-11
- Rear panel: 1-12
- Remote interlock connector: 1-12
- Repetition rate adjustment: 5-39
- Replacement of: 1-12, 5-38
- Trigger input: 1-13
- Trigger transformer board: 1-12

Nitrogen laser attenuator
- Adjusting laser intensity step controls: 1-14, 5-40

Nitrogen laser beam path
- Description: 1-14, 5-40
- Focusing ring: 1-14
- Prism: 1-14

Nitrogen laser, connectors: 1-12

Nitrogen plasma cartridge
- Alignment needed in laser unit: 1-12, 5-38
- Replacement of laser unit: 1-12, 5-38

Noises, in source area: 6-4

NT Registry
- Load/home positions in microns: 5-20
- Overwriting load position using diagnostics software: 5-20
- Writing load position to using diagnostics software: 5-20

O-ring seals
- Conditions damaging to: 5-16

Oscilloscope
- See Digitizer

Over pressure
- Far exceeds limit: 5-15

Over pressure vacuum fault: 5-15

Parity
- Accepted values: 5-50
- Codes: 5-50
- Resetting: 5-50
- Resetting in Voyager registry: 5-51
- Verifying: 5-48, 5-50
- Verifying in Voyager registry: 5-51

Peaks
- Do not appear in spectrum: 5-32

Photomultiplier
- In linear detector: 1-17

Plasma cartridge
- Nitrogen plasma cartridge: 1-12
- See Nitrogen plasma cartridge

Pneumatic actuators
- Flap valve movement: 1-7
- For sample plate movement: 1-7
- Linear: 1-7

Pneumatic system
- Compressor activation: 1-7
- Pressure available: 1-7
- Pressure needed for actuator control: 1-7

Positive drive assembly: 2-20

Posting a laser warning sign: 5-38

Power receptacle, nitrogen laser: 1-12

Power supply
- Source: 5-18
Powering up
Vacuum system 3-6
Voyager-DE STR Biospectrometry Workstation 3-6
 Preface xvii
Pressure ranges for vacuum gauges 5-46
Product support web site 5-6, A-3
Pulse Generator 2-63
Pulse generator triggered by DE pulse generator 2-50
Pulse Generator board drivers 2-64
Pulse generator board drivers 2-64
 registers 2-64
 theory 2-63
Pulse Generator PCA connectors 2-65
DIP switches 2-65
headers 2-65
jumpers 2-65
test points 2-65
Pump down
takes too long 6-11, 6-12
troubleshooting 6-11, 6-12
Purging to nitrogen 3-5

R
Ratings, laser 1-11
Reflection mode function 1-17
Refl ector
description 1-17
detector, description 1-18
disk potentials 1-18
how it works 1-18
tilt 1-18
Refl ector detector description 1-18
function 1-16, 1-18, 5-31
position 1-18
within mirror chamber 1-16, 5-31
Refl ector mode
compared to linear mode 5-31
description 1-17
ion beam path in 1-17
superior resolution and mass accuracy 1-17
when to use 1-17
Registry Editor
 path to vacuum monitor baud rate setting 5-48
 path to vacuum monitor Comm port setting 5-50
 path to vacuum monitor parity setting 5-51
Related documents xvii
Remote interlock connector, nitrogen laser 1-12
Repetition rate, laser
 adjusting, components required for maximum value of 20 Hz 5-39
setting 5-39, 5-40
Resources
 accessing A-2
Rough pump
 see fore pump
S
Safety information, laser xiv, 1-4, 3-2
Safety standards
 see Warnings, safety xiii
Sample loading chamber
description 1-7
diagram of 1-7, 5-7, 5-24, 5-25, B-8
flap valves 1-7
linear actuators 1-7
overview 1-7, 5-7
troubleshooting 5-7
troubleshooting symptoms 6-4
Sample loading, diagnosing using Mechanical control page 5-11
Sample plate
description 1-9
falling of the grabber 6-4
grabber fails to contact 6-8
not loading onto the stage 6-5
stays on sample stage during ejection 6-6
testing alignment 5-13
troubleshooting E09 error when ejecting 6-13
troubleshooting E09 error when loading 6-13
voltage, measuring 5-30
Sample plate holder 5-18
Sample stage
and air compressor 5-20
description 1-9
homing to initialize diagnostics software X-Y table 4-9, 5-19
keeping stationary when testing pneumatics 5-13
load position microswitch not tripping 5-21
load position recalibration 5-19
load position, linear actuator, and flap door interaction 5-20
not moving 5-13
sample plate misses during loading 5-20
selecting units, steps/microns 5-20
typical voltage applied 1-9
when to reset load position 5-20
writing load position to the NT Registry 5-20
X coordinate display 4-11
X coordinate scroll bar 5-19
Y coordinate display 4-11
Y coordinate scroll bar 5-19
Scintillator
in linear detector 1-17
Sequencing kit 1-3
Source
cannot reach position set 6-4
component grid 5-18
components of 5-18
DE switch box 5-18
Delayed-Extraction description 1-9, 5-18
enabling voltage using diagnostics software 5-34
error message when loading or ejecting 6-9
grids in 5-30
power supply 5-18
sample plate holder 5-18
setting voltage using diagnostics software 5-33
troubleshooting 5-18
troubleshooting Delayed-Extraction 5-32
troubleshooting flowchart 5-21
troubleshooting symptoms 6-4
Source clips
checking for damage 5-23
imperfections 5-23
Source DAC, calculating expected output voltage 5-32
Source pedestal
aligning 5-24
and grabber alignment 5-24
Source turbo controller
reconnecting 3-6
Source voltage
diagnosics software values 5-34
effect on beam-steering plates/einzel lens 5-34
setting using diagnostics software 5-34
testing using diagnostics software 5-36
Spectra
how trace produced 1-20
instrument error 6-15
troubleshooting symptoms 6-2
Stability fault 5-15
Start register, Low-Mass Gate Delay Timer board 2-17
Status bar, diagnostics software display 4-11
see also BA, TC2 gauge
component states shown 4-11
high voltage status 4-11
Interlocks status 4-11
Laser status 4-11
mirror (BA2) pressure 4-11
sample loading chamber (TC2) pressure 4-11
sample stage X coordinate 4-11
sample stage Y coordinate 4-11
source (BA1) pressure 4-11
Status, load and eject cycles 5-14
Stepper motor feedthroughs
adjusting 6-6
binding 5-28
grinding noise 5-28
home switches, adjusting if loose 6-8
interconnects 5-27
lubricating 5-28
microswitches 5-26
troubleshooting 5-26, 5-28
Switch box
see DE switch box
TC1, TC3, TC4 5-46

TC2
 see also thermocouple gauge
 calibrating 5-52
 high reading 6-11, 6-12
 pressure range 5-45, 5-46
 reading normal, but BA gauge shuts down 6-14

Technical documents, obtaining A-10
Technical Support, contacting through the Technical Support website A-9
Technical support, contacting
 Eastern Asia, China, Oceania A-7
 e-mail A-5
 Japan A-8
 Latin America A-8
 telephone or fax in North America A-5
 telephone or fax outside North America A-7

Tektronix digitizer 1-19
Testing high-voltage cable function 5-30

Thermocouple gauge
 see also TC2
 calibrating 5-52
 expected accuracy 5-52
 factors affecting accuracy 5-52
 function 5-45, 5-51
 heat transfer and pressure 5-51
 junction 5-51
 location 5-51
 output display 5-51
 range 5-45
 TC2 5-45
 wire temperature 5-51

Timed Ion Selector
 adjusting voltage 5-42
 disabling high voltage 5-42
 enabling using diagnostics software 5-33
 function 1-15
 location 2-26
 setting start/end delay times D-12
 setting start/end delay times using diagnostics software 5-33
 theory 2-26
 timing signal 1-14
 triggered by DE pulse generator 2-50
 uses 1-15
 voltage 1-15, 5-42

Timing delays, setting using diagnostics software 5-33, 5-35, 5-43
Timing signals, nitrogen laser 1-14
TIS, see Timed Ion Selector
Triangle multigauge controller key 5-47
Trigger buffer 2-17, 2-64
Trigger input, nitrogen laser 1-13
Trigger transformer board, nitrogen laser 1-12
Troubleshooting
 source 5-23
 Source flowchart 5-21
 with system under vacuum 5-30

TTL Output Opto-Trigger board
 connectors 2-31
 overview 2-31
 theory 2-31

Turbo pump
 fault 6-18
 function 5-44
 LED states 6-18
 MALDI control board LEDs 3-6
 status when powering up 3-6
 typical pressure 5-44
 workstation top panel LEDs 3-6

Types of signals 2-18, 2-64

U

Up key, multigauge controller key 5-47

V

VAC multigauge controller key 5-46, 5-52

Vacuum faults
 conditions for safely overriding 5-15
 conditions that trigger 5-15
 ignoring 5-16
 over pressure 5-15
 overriding during load/eject cycles 5-15
 overriding in diagnostics software
 persistent over pressure 5-15
 potential sources of 5-16

Vacuum gauge panel
 see also Multigauge controller

Vacuum pumps
 conditions damaging to 5-16
Vacuum system
see also Multigauge controller chambers 5-44
description 5-44
gauge 5-44
initialization error 6-15
overriding vacuum faults in diagnostics software 5-15
powering up after venting 3-6
pressure ranges 5-46
pumping baffle to maintain differential pressure 5-44
pumps 5-44
purging with nitrogen 3-5
typical pressures 5-44
valves to isolate chambers 5-44
venting 3-4
venting to air 3-5
Voyager-DE STR 1-8

Valves
see also Flap valves
see Flap valves, Vent valve diagnosing using Mechanical control page 5-11

Variable-voltage grid
and Delayed-Extraction 1-9
component of source 5-18
description 1-9
typical voltage applied to 1-9

Vent valve
conditions to meet before opening/closing 5-10
diagnosing using Mechanical control page 5-11
typical main source chamber 1-8

Video camera monitor
initialization 1-20
magnification 1-20

Video monitor, description 1-2

Voltage
+5 voltage low or high 6-10
see also high voltage (continued)
adjusting Timed Ion Selector 5-42
calculating expected Grid DAC voltage 5-42
Grid DAC voltage incorrect 6-10
low 30 kV power supply measurement 6-10
measuring directly 5-30
measuring indirectly 5-30
overriding vacuum faults in diagnostics software 5-15
setting component using diagnostics software 5-33, 5-43
setting using diagnostics software 5-35
source DAC voltage incorrect 6-10
testing cable with system under vacuum 5-30

Voltage Divider box (einzel lens)
location 2-44
typical main source chamber 1-8

Voyager-DE STR 1-8

Variable-voltage grid
and Delayed-Extraction 1-9
component of source 5-18
description 1-9

Vent valve
conditions to meet before opening/closing 5-10
diagnosing using Mechanical control page 5-11
typical main source chamber 1-8

Video camera monitor
initialization 1-20
magnification 1-20

Video monitor, description 1-2

Voltage
+5 voltage low or high 6-10
see also high voltage (continued)
adjusting Timed Ion Selector 5-42
calculating expected Grid DAC voltage 5-42
Grid DAC voltage incorrect 6-10
low 30 kV power supply measurement 6-10
measuring directly 5-30
measuring indirectly 5-30
overriding vacuum faults in diagnostics software 5-15
setting component using diagnostics software 5-33, 5-43
setting using diagnostics software 5-35
source DAC voltage incorrect 6-10
testing cable with system under vacuum 5-30

Variable-voltage grid and Delayed-Extraction 1-9
component of source 5-18
description 1-9

typical voltage applied to 1-9

Vent valve
conditions to meet before opening/closing 5-10
diagnosing using Mechanical control page 5-11
typical main source chamber 1-8

Video camera monitor
initialization 1-20
magnification 1-20

Video monitor, description 1-2

Voltage
+5 voltage low or high 6-10
see also high voltage (continued)
Index

Voyager Diagnostics software, see Diagnostics software

Voyager electronics
- circuit board locations 2-2
 - in earlier Voyagers 2-59
 - in most Voyagers 2-4
 - in newer Voyagers 2-33
- overview 2-2
- see also circuit boards 2-1

Voyager Instrument Control Panel 1-21

Voyager registry
- path to vacuum monitor baud rate setting 5-48
- path to vacuum monitor Com Port 2 setting registry key 5-50
- path to vacuum monitor parity setting 5-51
- resetting parity in 5-51

Voyager Sequence Control Panel 1-21

Voyager software
- compatible Diagnostics software versions 4-2
- features 1-21
- function 1-2, 1-20
- parity setting 5-50
- platform 1-20
- troubleshooting tables 6-9

Voyager-DE STR Biospectrometry Workstation
- accessories 1-3
- CID option 1-3
- components overview 1-6
- computer system 1-19
- description 1-2
- diagram 1-2, B-3
- diagram of mass spectrometer components 1-6, 5-18
- GPMAW option 1-3
- laser option 1-3
- nitrogen laser beam 1-14
- options 1-3
- overview 1-2, 1-7, 5-7
- powering up 3-6
- test standard kits 1-3

Warnings, safety (continued)
- laser always ready to fire in external mode 5-38
- laser beam hazard 1-4, 1-11, 1-13, 3-2, 5-21, 5-38, 6-9
- laser burn hazard 1-13
- laser charged in external trigger mode 1-4, 1-13, 3-2, 5-38
- laser emission 1-11
- laser emits radiation 5-38
- laser potentially damaging the eyes 5-38
- laser radiation hazard 1-4, 1-11, 3-2, 5-21, 5-38, 6-9
- nitrogen laser overheating 1-13
- posting a laser warning sign 5-38
- posting laser warning sign 5-38
- remove reflective items before servicing 5-38
- removing instrument covers xii, 5-32
- safety standards xi
- storage capacitors charge when laser in external mode 5-38
- symbols on system viii
- UV radiation from laser xi

Web site, MALDI product support 5-6, A-3

X

X coordinate
- see Sample stage

X feedthrough
- see Stepper motor feedthroughs

XY Status display 4-11

X-Y Table control page 5-19
- see also Diagnostics software function 4-9
- overview 4-9, 5-18
- setting load position 5-19
- testing alignment 5-13
- writing load position to the NT Registry 5-20

Y

Y coordinate
- see Sample stage

Y feedthrough
- see Stepper motor feedthroughs

Warnings, safety
- cooling fan 1-13
- DE switch box high voltage 2-37
- ethanol chemical hazard 6-12
- high voltage xii, 5-32
- high voltages present 5-38
(continued)
Applied Biosystems vast distribution and service network, composed of highly trained support and applications personnel, reaches into 150 countries on six continents. For sales office locations and technical support, please call our local office or refer to our web site at www.appliedbiosystems.com or to the Technical Support and Training appendix in this document.