How To constRucT Fo L

CLASSICAL LAGRANGIAN (USE OF GENERALIZED COORDINATES
AND THEIR CONJUGATE HOHEI\!T'A)

CLASSICAL HAMILTONIAN
SUM OF UNCOUPLED HAMILTONIANS OF THE ATOM AND THE FIELDS
WITH THE REPLACEMENT —

S A (=
OF ELECTRON MOMENTUM 4 P; + €AF))
VECTOR POTENTIAL

IN THE COULOMB GAUGE (T +A =0y CONVENIENT FOR THE
QUANTIZATION OF THE FIELD)

COMPLETE HAMILTONIAN

(THE SO-CALLED MINIMAL
COUPLING)

R= 2P reAw)) + Jz-gsca‘-)d:(a:)aa- + ég(eoETz + 15 B
J

KINETIC EMERGIES OF ELEGTROSTATIC ENERGY OF
ELECTRONS AND ENERGY ENERGY OF ELECIRDNS THE RADIATION
OF INTERACTION WITH AND NUCLEI FIELD

THE RADIATION FIELD 6(¥)= _Zed‘($_q_j)_’_ Nl I <A

Vogesw  Er=mA

A
WHERE 15 F_ ¢ &)= ifr'r'éo g l:ﬂﬂ.,,
) J

Le }
q—
CoOULOM® INTERACTION

BETWEEN VARIOUS
PARNICLES

(EL=-T9)

|
-8 ST A== v Tr=.\2
RI_EZ—A(Q—J)PJ +eﬁ ZA('T'J)
. : A (¥;) DEPENDS ON THE
NOT CONVENIENT FOR CALCULATIONS » "" CHOICE OF GAUGE
UNITARY TRANSEORMATIONS foSITIONS OF ALL & !

H=Uu"F U




Bly.2

(FIRST NON-VANMISHING TERM OF

= H(0) AND TWO NON ~VANISHING
W= W+ g+ R

I TeeNSIN THE EXPANSION OF ET(o))

2
& ! Ller= e _
’}EE_ % %7_1 + 3 g.s(rr) PP AF ATOM
¢ A 3?: S(ioé-rz + ' B2)dF RADIATION FIELD
TN
Ho= @mﬂ- H €q, NEGLECTED
_ MOM LhéAR
ELECTRIC-DIFOLE. 5 2
INTERACTION "‘?;—('rj X B(OY)
seZ (7 F)F; - Eplo) M-8 _ (RELATVELR)
. SMALLER THAN
Rep B4 T™HE ORDER
OF THE FINE STRUCTURE
ELECTR|C DIPOLE INTERACTION CONSTANT
g - 4 = B4 e W
,\3{50= eZ’Y‘J 4 ET‘(D)z eD- E-r(o) a= 4ug Ac |3t

i
THE ELECTR!C DIPOLE A‘PPQOXlMAle ON

?ﬁ = ‘Keo

SECOND QUANTIZATION OF THE ATOMIC HAMILTOMIAN
D=2 1D ]I =3 D 1L><

Y Ly bt b‘
" o i S o
D—%DLJbtb\, y Dij =Ll

QUANTIZATION OF THE FIELD




l<|

SECOND QUANTIZATION
INTRODUCES NO NEW PHHJSICS!

IT 1S JUST NEW AND VERY ELEGANT WAY OF
TREATING MANY- PARTICLE SYSTEMS

AXIOM OF QUANTUM MECHANICS: ANTISYHMETRY PRINCIPLE

SATISFIED BY SLATER DETERMINANTS
AND THEIR LINEAR CONBINATIONS

CAN WE SATISFY THE ANTISYMMETRY PRINCIPLE WITHOUT
USING SLATER DETERMINANTS ¢

FORMALISM IN WHICH THE ANTISYHMNETRY PROPERTY
OF THE WAVE FUNCTION HAS REEN TRANSFERRED ONTO

THE ALGEBDRAIC PROPERTIES OF CERTAIN OPERATORS
WHY SECOND QUANTIZATION?

iy =Hwilid> ="
, FIRST QUANTIZATION ° Z 1iv&il=1
=484 = L2 1iURIGE | <iLjo=6y
L J
=7 . o) Javgil
s @ . STATE ( |S CREATED
el | LKLY = 10> & STATE j 1S ANNIHILATED

b; bj ILy=1i>&jL

gﬁ= Z\)ﬁw' b-+ b: SECOND QUANTIZATION
P V L
L CREATION }
ANNIHILATON

l

.
T

OF STATE




I<]
N

4 d
bb . (XL) LEanmbm;s
SPIN - ORITAL
CREATION OF ONE- CARTICLE STATE

ARBITRARY SLATER DETERMINANT: :
X, . %D

bﬂxk’... r><l'>= I{XL‘,)')(K, 'XL>

THE ORDER IN WHICH TwoO CREATION OPERATORS ACT
1S \MPORTANT !

bi” b 10, = b5, S > = 1 6 ey - WS
BiF B | Xy XD = 1%G) X3y Wi - XD == | R X Xeer - XD
(bi* byt + by b X, .. %> =0
OPERATOR RELATION:
bi*bj* + b'bf =0 =4 b, by}

2 " ANTICOMMUTATOR
bf oy =— fbi.

\F E:j bL+ b:: "bi.+ b:- =0 FAUL EXCLUSION PRINCIPLE‘.
EXAMPLE:
O by | X5 Xay= byt 1% Xg K = 1% Kg X A3 H=0
IN GENERAL
b 1%k,... XH=0 ¥ €}k, L]
b.  ANNIHILATION |, ADJomnT oF bt : (b)) =b;

N
bl_ \ (XL (yk)... ()(L>= “)(K,.;. (XL>

ACTS ONLY |F SPIN ORBITAL |S IMMEDIATELY
TO THE LEFT CTHERWISE :



<]
ul

‘ 5 e
{bﬁr 05 }" §i;

bb] = -bithy c#j |
b biT =1~ bi*b,  (rFor ™HE sAHE SPIN ORBITAL)

ALL THE PROPERMES OF SLATER DETERMINANTS
ARE REPRESENTED BYTHE ANTICOMMUTATION

RELATIONS OF creATION AND ANNIHILATON OF.
{bi*, bj*f=0 |
ibe,b;§=0

{be, byt h= &y

ANTICOMMUTATOR

VACUUM STATE = STATE OF A SYSTEM THAT CONTAINS
l > NO PARTICLES
IT 1S NORMALIZED <1 >=1

PROPERTIES:
= b:l >=0

< |b.;+=0
APPLWYING A SEQUENCE OF bT => ANY STATE OF THE SvSTEN
C1%>= bk D
S e S R

SECOND- OUANTIZED REPRESENTATION
OF A SLATER DETERMINANT



BIM.3
FREE CLRSICAL FIELD: Tt =0

TRANSVERSE COMPONENT
OF CURRENT DENSITY,

e 2
TR & 2'9—-2- =0 ® FoR INTERACTIONS WITH ATOHS
C* ot JT 1S DUE TOTHE ATOMIC ELECTRONS
IN THIS REGION OF SPACE

THE FIELD 1S FREE

— ot
OUANTZATION oF MEANS: A REM——%A
™E ELECTROMAGNETIC FIELD
CUBIC CAVITY: BUT INSTEAD OF STANDING=WANE SOUUTIONS,

RQUNNINWAVES WITH PERIODIC BOUNDRRY
CONDITIONS

—

FOURIER SERIES FOR A N THE CAUITY
A= %. {Ai (D) exp (L) + A (D) exp(- LEF)}

WAVE VECTDR < = 2Tn - 2Tn _or
. el ol L S o Ju,z_-g—m)_
Mmx,My,Mz= 0, k1, £2,...
THE COULOMB GAUGE CONDITION:
- = T . Rk
k-Ag(t)= k*Az (£)=0

FIELD
EQUATION &

ﬂA(a+ =0

THE SARE FOR Az )
FOURIER COEFFICIENTS SATISFY  SAMAFIED INDEPEMDENTLY
THE SIMPLE HARMONIC EQUATION

LAY (‘t) 2 = _ »
@ i wEAk-—O, wy=ck
N 1%

CONVERSION TO A QUANTUM MECHANLICAL
HARMONIC - OaCILLATOR  EGUATION

1 DA _
Dt2



Biy.Y

128 The guantized radiation field

To this end, let us evaluate the classical energy of the cavity normal mode
specified by wavevector k. The solution of eqn (4.48) be taken as

Ay(t) = Ay exp(—imnt), (4.50)
and the complete vector potential (eqn (4.43)} becomes
(A =T {Ay exp(—iwgt +ik.1)+Af explict —ik.r)} D) @sy

l i —"

The cycle-averaged energy content of a single mode k is

& = % f (B2 +u5 'BE Y, (4.52)
epvity

where the bars denote a cycle a\;erage, and E, and B, are the ¢lectric and
magnetic fields associated with the mode. From eqns (4.5), (4.8), and (4.51)

E, = iw A, exp(—iwyt+ik.r)— A¥ exp(ivt —ik.r)}, (4.53)
B, = ik x {A, exp(—iw,t+ik.r)—AF exp(iot —ik.r)}. {4.59)

It is evident from eqns (4.46) and (4.49) that the magnitudes of E, and B, are
related by eqn (1.18) as expected for a free electromagnetic wave. Substitution
into eqn (4.52) and evaluation of the time average gives

\ &, = 2e,VwiA, AL, (4.55)
where V= L}

The mode variables A, and Af can be replaced by a generalized mopde

‘pasition’ coordinate {, and a mode ‘momentum’ P, in accordance with the

transformations

(4.56)

Ay = (deoVod) HanQu +iP).

Al = (deoVx) HonQh ~iP))a.

The coordinates @, and P, are scalar quantities, the directional properties of
A, and A} having been separated by the introduction of a unit polarization

vector g, for the mode.
The single-mode energy (eqn (4.55)) is transformed by eqns (4.56) and (4.57)

into

@&.57

8, = ¥P{+ Q). (4.58)

This is precisely the usual form of the energy of a classical harmonic oscillator.
The problem of the vector potential associated with a cavity mode has thus
been made formally equivalent to a classical harmonic-oscillator problem.
The complete classical Hamiltonian for the cavity is formed by taking a sum
over k, and the two independent directions of s, , of the single-mode expression
(4.58),



The quantized radiation field 129
4.4. The quantum-mechanical harmonic oscillator

The electromagnetic field is now quantized by conversion of @, and P, into
quantum-mechanical position and momentum operators 4, and f,. As a
preliminary to this conversion, it is convenient to develop the theory of the
quantum-mechanical harmonic oscillator in the form most suitable for the
field quantization.

The quantum-mechanical Hamiltonian for a one-dimensional harmonic
oscitlator of unit mass is

H = HP +0?§), (4.59)
where p and 4 obey the usual commutation relation
[4.9] = ih. (4.60)
Define a pair of operators 4 and g' to replace § and p,
4 = (2hw) Hwd +ip) (4.61)

and
a' = (2hw) Hwd—ip) (4.62)
or, conversely
g = (h2w)*d+a" (4.63)
= —i(hw/2)¥d—4"). (4.64)

The operators d and &' are called, respectively, the destruction and creation

operators for the harmonic oscillator. As will become clear, they are extremely

useful, on-account of their simple properties. They do not, however, represent
observables of the harmonic oscillator, as is shown below.
From eqns (4.61) and (4.62) we have

a'é = (2hw)~ N P%+w?4? +iwdp —iwp§)

= (hw)~ (I —}hw), (4.65)
where eqns (4.59) and (4.60) have been used. Similarly
- 48t = (hw)™ (P +1ho). (4.66)
The commutator of the new operators is easily found from these resuits,
[4,4'] = aa’—d'a = lj (4.67)
From eqn (4.65), the Hamiltonian can be written
H# = hold'd+1). (4.68)

The combination of operators &'d occurs frequently; it is called the number
operator of the oscillator, and we denote it
i W N W —

A= 4a'd (4.69)
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