

PROBLEMS (II)

① TAKING INTO ACCOUNT THE FOLLOWING EQUATIONS (POSTULATES):

$$\begin{aligned}\hat{S}_x d &= \frac{1}{2} \hbar \beta & \hat{S}_y d &= \frac{i}{2} \hbar \beta & S_z d &= \frac{1}{2} \hbar d \\ \hat{S}_x \beta &= \frac{1}{2} \hbar d & \hat{S}_y \beta &= -\frac{i}{2} \hbar d & S_z \beta &= -\frac{1}{2} \hbar \beta\end{aligned}$$

SHOW THAT AN EXPERIMENTAL FACT

$$|S|^2 = S(S+1)\hbar^2 = \frac{1}{2}(\frac{1}{2}+1)\hbar^2$$

IS REPRODUCED WITHIN THE FORMALISM OF QUANTUM MECHANICS

② IN THE CASE OF TWO ELECTRON SYSTEM IDENTIFY THE SPIN FUNCTIONS $\chi_1, \chi_2, \chi_3, \chi_4$ (SEE TRANSP. I 18) AS EIGENFUNCTIONS OF \hat{S}^2 AND \hat{S}_z

③ CONSTRUCT FUNCTIONS THAT ARE **OF GOOD SYMMETRY** (AND NORMALIZED) IN THE CASE OF THE EXCITED CONFIGURATION OF He ATOM

$$1s^1 2s^1$$

④ IN THE CASE OF EXCITED CONFIG. $1s^1 2s^1$ OF He ATOM SHOW THAT REQUIRED ANTSYMMETRY OF THE FUNCTIONS LEADS TO AN EXPERIMENTAL FACT THAT TRIPLET IS OF LOWER ENERGY THAN SINGLET (ASSUME THAT THE EXCHANGE TERM IS POSITIVE); WHAT WOULD HAPPEN IF THE FUNCTIONS WOULD BE SYMMETRIC?

HAMILTONIAN FOR He ATOM:

$$H = -\frac{\hbar^2}{2m} \sum_{i=1}^2 \nabla_i^2 - \sum_{i=1}^2 \frac{e^2}{r_i} + \frac{e^2}{r_{12}}$$

⑤ L-S COUPLING. FIND TOTAL S, L, J AND CONSTRUCT THE SPECTROSCOPIC TERMS FOR CONFIGURATION

$$1s^2 2s^2 2p^6 3d^3$$