CONCLUSIONS: OF D3 E (2.DIN.) OF D3 A OR B? SEPARATION OF ELEMENTS OF A GROUP INTO SMALLER SETS: 1. SUBGROUPS ### 2. CLASSES SIMILARITY TRANSFORMATION A, X ∈ G B IS SIMILARITY TRANSFORM OF A BYX A AND B ARE CONJUGATE A COMPLETE SET OF ELEMENTS THAT ARE CONJUGATE TO ONE ANOTHER IS CALLED A CLASS OF THE GROUP (SIMILARIN RELATION FOR GIVEN A AND ALL XEG!) #### PROPERTIES: - 1. THE ORDER OF ANY SUBGROUP g OF A GROUP OF ORDER h is such that $h/g = k \Rightarrow \text{INTEGER}$ (g is Divisor of h) - 2. THE ORDERS OF ALL CLASSES MUST BE INTEGRAL FACTORS OF THE ORDER OF THE GROUP ### IS A SUH OF DIAGONAL ELEMENTS OF MATRIX REPRESENTATION (TRACE OF A MATRIX) EXAMPLE: MATRIX REPRESENTATION OF D3 IN (Px, Py, Pz) $$\mathbb{D}(C_3^{+1}) = \begin{pmatrix} \frac{1}{2} & \frac{1}{3} & 0 \\ -\frac{1}{2} & \frac{1}{3} & 0 \\ 0 & 0 \end{pmatrix} - \frac{1}{2} - \frac{1}{2} + 1 = 0$$ FOR REDUCIBLE REPRESENTATION $$\chi(E) = 3, \quad \chi(C_3) = \chi(C_3^{-1}) = 0$$ $$\chi(E)=3$$, $\chi(C_3)=\chi(C_3^{-1})=0$ $\chi(C_{2a}^{-1})=\chi(C_{2b}^{-1})=\chi(C_{2c}^{-1})=-1$ FOR IRREDUCIBLE REPRESENTATIONS OF D3 IN (Px Py Pz): $$Y_{E}(P_{x}P_{y},\hat{R})$$ E 2C₃ 3C₂' $Y_{A}(P_{z},\hat{R})$ 2 0 0 $Y_{A}(P_{z},\hat{R})$ 1 1 -1 CHARACTER TABLE # QUESTIONS ABOUT D3: - 1. WHAT IS THE GROUP ORDER? - 2. HOW MANY CLASSES ARE IN D3? - 3. HOW MANY ELEMENTS IN EACH CLASS? - 4. HOW HANY IRREDUCIBLE REPRESENTATIONS IS POSSIBLE TO CONSTRUCT? - 5. WHAT ARE THE DIMENSIONS OF IRREDUCIBLE REPRESENTATIONS ? : WHAT ARE THE TRANSFORMATION PROPERTIES OF Px Py Pz UNDER SYMMETRY OPERATIONS OF D3 ? WHAT IS THE ENERGY SCHEME OF HATOM IN EXCITED STATE OF SYMMETRY 20 IN A FIELD (EXTERNAL) OF D3 SYMMETRY ANSWERS # GENERALIZATION TE (R) THE ELEMENT IN MITH ROW AND THE NITH COLUMN OF THE MATRIX REPRESENTATION OF R IN THE ITH IRREDUCIBLE REPRESENTATION ## GREAT ORTHOGONALITY THEOREM $$\sum_{R} \left[T_{i}(R)_{mn} \right] \left[T_{j}(R)_{m'n'} \right]^{*} = \frac{h}{\left[L_{i} L_{j} \right]} \delta_{ij} \delta_{mm'} \delta_{nn'}$$ L: - DIMENSION OF T TWO DIFFERENT VECTORS FROM h DIMENSIONAL SPACE ARE ORTHOGONAL #### FOR REAL NUMBERS: $$\sum_{R} T_{i}(R)_{mn} T_{j}(R)_{mn} = 0 \quad \text{if } i \neq j$$ $$\sum_{R} T_{i}(R)_{mn} T_{i}(R)_{m'n'} = 0 \quad \text{if } m \neq m' \text{ or } n \neq n'$$ $$\sum_{R} T_{i}(R)_{mn} T_{i}(R)_{m'n'} = 0 \quad \text{if } m \neq m' \text{ or } n \neq n'$$ $$\sum_{R} T_{i}(R)_{mn} T_{i}(R)_{mn} = h/l_{i} \quad \text{of such a vector} = h/l_{i}$$ ### IMPORTANT RULES (PROPERTIES) 1) THE SUM OF THE SQUARES OF THE DIMENSIONS OF THE IRREDUCIBLE REPRESENTATIONS IS EQUAL TO THE ORDER OF THE GROUP $$l_1^2 + l_2^2 + \dots + l_5^2 = h$$ THE SUM OF THE SQUARES OF THE CHARACTERS IN ANY IRREDUCIBLE REPRESENTATION EQUALS TO h $$\sum_{R} \left[\chi_{i}(R) \right]^{2} = h$$ (THE VECTORS WHOSE COMPONENTS ARE) THE CHARACTERS OF TWO DIFFERENT IRREDUCIBLE REPRESENTATIONS ARE ORTHOGONAL $$\sum_{R} \chi_i(R) \chi_j(R) = 0$$ WHEN $i \neq j$ AT THE SAME TIME THE SQUARE OF THE LENGTH OF SUCH VECTOR $$\sum_{R} [\chi_{i}(R)]^{2} = h$$ - THE CHARACTERS OF REPRESENTATION OF ALL OPERATIONS BELONGING TO THE SAME CLASS ARE IDENTICAL - 5) THE NUMBER OF IRREDUCIBLE REPRESENTATIONS OF A GROUP IS EQUAL TO THE NUMBER OF CLASSES IN THE GROUP - Among the irreducible representations of a group always there is fully-symmetric representation A₁ for which all characters are equal 1 (transformation properties of scalars) - THE CHARACTERS OF REPRESENTATION ARE INDEPENDENT OF BASIS FUNCTIONS CONCLUSION: COMPLETE CHARACTER TABLE FOR D3 | D_3 | E | 2C3 | 302 | | |-----------------------------|---|-----|-----|---| | $X_{A_1}(\hat{\mathbf{r}})$ | 1 | 1 | 1 | _ | | XE(R) | 2 | -1 | 0 | | | XA2(R) | 1 | 1 | -4 | | # CHARACTER TABLE | | | 1 | | | | |--|-----------------------|----------------------------------|---|--------------------------------|---| | Processing and Proces | 4. | D ₂ C _{2e} | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | D2: | $x^2, y^2, z^2 \in A_1$
$xy, z, R_z \in B_1$ | | | Γ_{1} | A1 A1 | 1 1 1 1 | THE REAL PROPERTY. | | | | Γ_2 | B_1 A_2 | 1 1 1 1 | | $xz, y, R_y \in B_2$
$yz, x, R_x \in B_3$ | | | Γ_3 | B_2 B_1 | $\hat{1} - \hat{1} + \hat{1} - \hat{1}$ | Con: | $z, x^2, y^2, z^2 \in A_1; xy, R_2 \in A_2$ | | o Mile oue | Γ_4 | B_3 B_2 | 1-1-1 1 | 200 | $xz, x, R_y \in B_1; yz, y, R_x \in B_2$ | | O.C. Commen | 5.1 | D_3 | Ê 2Ĉ3 3Ĉ2 | D | $+y^2, z^2 \in A_1; z, R_z \in A_2$ | | - Carriera | ٦.٢ | 3 C3, | \hat{E} , $\hat{3}\sigma_v$ | 123. A | r_{y} , r | | 103 | Γ_1 | A4 | 1 1 1 | (A) | $\{x, yz\}, (x^2 - y^2, xy), (x, y)\} \in E$ | | (P2) | Γ_2 - | A2 | 1 1 -1 | | $+y^2, z^2, z \in A_1; R_2 \in A_2$ | | | Γ2 _ | E | 2 -1 0 | (x2 | $-y^2, xy), (xz, yz), (x, y),$ | | (PxPy) | | | | (R | $(R_i) \in E$ | | 1 | 6. | D_4 | Ê Ĉ, 2Ĉ, 2Ĉ | | | | | ٧. | 1 | 2 2 | | $4: x^2 + y^2, z^2 \in A_1; z, R_2 \in A_2$ | | 1 | | C40 | 47 // | 20, | $(x, y), (xz, yz), (R_x, R_y) \in E$ | | 1 | | D_{2d} | \hat{E} ,, $2\hat{S}_{4}$ $2\hat{C}$ | | $(x^2-y^2)\in B_1 \ xy\in B_2$ | | - | Γ_1 | Aı | 1 1 1 1 | | $x_1 : x_2 + y_2, z_3, z \in A_1; R_2 \in A_2;$ | | | Γ_2 Γ_3 | A ₂
B ₁ | 1 1 1 -1 | -1 | $x^2-y^2\in B_1; xy\in B_2;$ | | 1 | Γ4 | B_2 | 1 1 -1 -1 | -1 D | $(xz, yz), (x, y), (R_x, R_y) \in E$ | | | Γ_{5} | E | 2 -2 0 0 | 0 | $x^{2} + y^{2}, z^{2} \in A_{1}; R_{x} \in A_{2};$
$x^{2} - y^{2} \in B_{1}; xy, z \in B_{2},$ | | | - 4 | | | | $(xz, yz), (x, y), (R_x, R_y) \in E$ | | | | 1 | ^ ^ ^ | 1 | I | | 1 | 7. | D_6 | E C2 2C3 2C6 | $3C_2 2C_2$ | $D_6: (x^2+y)^2, z^2 \in A_1$ | | 20 | | Con | \hat{E} , , , \hat{E} $\hat{\sigma_k}$, $2S_3$ | $3\sigma_{s}$ $3\sigma_{d}$ | $z, R_z \in A_z$; | | and the same of th | | D_{3k} | $\hat{E} \hat{\sigma_k}$, $2S_3$ | $3\hat{C}_2$ $3\hat{\sigma}_o$ | (x, y)(xz, yz), | | 1 | | de marie | ļ | | $(R_x, R_y) \in E_1$ | | | Γ_1 | A ₁ A ₁ | 1 1 1 | 1 1 | $(x^2-y^2,xy)\in E_2$ | | | Γ_2 | As As | 1 1 1 1
1 -1 1 -1
1 -1 1 -1 | _1 _1 | $C_{6g}: x^2+y^2, z^2, z \in A_1$ | | | Γ_3 | B1 A1 | 1-1 1-1 | 1 -1 | $R_{x} \in A_{2}$ | | - 1 | Γ_4 | B ₂ A ₂ | 1 -1 1 -1 | -1 1 | (x, y), (xz, yz), | | . 1 | | | 1 | | $(R_x, R_y) \in E_1$ | | Ì | Γ_5 | $E_1 E'$ | 2 -2 -1 1 2 2 -1 -1 | 0 0 | $(x^2-y^2,xy)\in E_2$ | | broadble | r6 | E ₂ E' | 2 2 -1 -1 | 0 0 | $D_{2h}: x^2+y^2, z^2 \in A_1$ | | 1 | | - | | | $R_z \in A_2$; $z \in A_2$; | | | | | | | $(x^2-y^2, xy), (x, y) \in E'$ | | and the same | | VIOLEN LANGE | | | $(xz, yz), (R_x, R_y) \in E''$ | | 1 | | <u> </u> | E - | | | Tablica VI.2. Rozkład termów atomowych $(d^n)^{2\ell+1}L$ na reprezentacje nieprzywiedlne | Term
R ₃ | Elementy symetrii T ₄ :
Elementy symetrii O: | Ê | 8Ĉ ₃ ,
8Ĉ ₃ | $3\hat{C}_2$
$3\hat{C}_2$ | Ĝσ₄
ĜĈ'₃ | 6Ŝ.
6Ĉ. | Rozkład | |------------------------|--|------------------------|--------------------------------------|------------------------------|--------------------|--------------------|--| | S
P
D
F
G | SPECTROSCOPIC => | 1
3
(5
7
9 | 1
0
-1
0
-1 | 1
-1
-1
-1 | 1
-1
1
-1 | 1
-1
-1
1 | A_1 T_1 $E+T_2$ $A_2+T_1+T_2$ $A_1+E+T_1+T_2$ $E+2T_1+T_2$ | SPLITTING OF ENERGY LEVELS - ## CHARACTER TABLE | 8. | O
Te | Ê sĈ, | 3Ĉ, 6Ĉ,
"6ĝ, | - 1 | $O: (x^2-y^2, xy) \in E:$
$(x, y, z), (R_x, R_y, R_z) \in T_1$ | |-------------------|---|-----------------------|--|-------------------|--| | Ti Ti Ti Ti Ti Ti | A ₁ A ₂ E T ₁ T ₂ | 1 (2 -1) | 1 1
1 2 0
1 2 0
0 -1 -1
0 -1 (1) | | $(xy, xz, yz) \in T_{2}$
$T_{2}: (x^{2}-y^{2}, z^{2}) \in E_{3};$
$(R_{2}, R_{2}, R_{2}) \in T_{3};$
$(x, y, z), (xy, xz, yz) \in T_{2};$ | | 9, | Co. | Ê | 2Ĉ(*) | â, | | | A
E
E | | 1
1
2
2
2 | 1
2 cos p
2 cos 2 p
2 cos 3 p | 1
-1
0
0 | $x^{2}+y^{2}, x^{2}, x$ R_{0} $(x, y), (xx, yx), (R_{0}, R_{0})$ $(x^{2}-y^{2}, xy)$ |