Chemistry 237 -- Quiz 2

Pledge and signature:

1. (8) Consider a particle in a one-dimensional box of length a.
(a) Sketch ψ and $|\psi|^{2}$ for $n=1$ and $n=4$.
(b) In problem 17.23 you derived an expression for the probability of finding the particle at $x \leq a / 4$. Without doing any numerical calculations, and considering just the symmetry of the wavefunctions, for which levels will $P(x \leq a / 2)=1 / 2$?
(c) Suppose the energy difference between levels $n=1$ and $n=2$ is ε. What is the energy separation between levels $n=2$ and $n=5$?
(d) What will be the new value of ε if we (i) decrease the mass by a factor of 2 ; (ii) triple the length? (In each case, assume other quantities are held constant.)
2. (6) Consider the probability distribution $P(x)=C x$ for $0 \leq x \leq 3$ and $P(x)=0$ elsewhere. Calculate (a) the normalization constant C, (b) the mean μ and (c) the variance σ^{2}.
3. (6) You want to use KG to fit data to the function, $y=a x+b x^{2}+c x^{3}$.
a. Write exactly what you must enter in the Define Fit box.
b. The fit is done unweighted and yields Chisq $=29.173$ for 13 points. Calculate $s_{y}{ }^{2}$ and s_{y}.
c. The fit yields $\mathrm{C}=4.9711$ and $\operatorname{Error}(\mathrm{c})=1.1185$. If you repeat the entire experiment and analysis, what (approximately) is the probability that you will obtain a new c differing from this value by more than 1.6 ? [Use the table on the second page of the Class Pak.]
