I.	A.	$\mathbf{A} = \begin{array}{ccc} x_i^2 & x_i \exp(3x_i^2) \\ x_i \exp(3x_i^2) & \exp(6x_i^2) \end{array} = \begin{array}{ccc} a \\ b \end{array} \mathbf{z} = \begin{array}{ccc} x_i y_i \\ y_i \exp(3x_i^2) \end{array}$
	В. С. D.	A = z $Y = y/x$; $X = \exp(3x^2)/x$ $s_y = \text{constant}$ (assumption for unwtd fit) $w_{Yi} = x_i^2$ $s_y = 0.159$; $S = 100 S$ for 290 measurements; $s_y \sim \text{same}$.
II.	А. В. С.	$4.67(18) \times 10^{-4} \text{ mol/L}$ A = 1.38 833.4 nm
III.	A. B. C. D.	1s ² 2s ² 2p; ground term = ² P state = ² P _{1/2} 1s ² 2s 2p ² For C, 2p ² yields ³ P, ¹ D, and ¹ S. Coupling an <i>s</i> electron gives ² P, ⁴ P, ² D and ² S. There are $\frac{6}{2}$ = 15 states of 2p ² ; 2 2s orbitals 30.
	E.	(1) $(2S+1)(2L+1) = 6 + 12 + 10 + 2 = 30$ (2) $(2J+1) = (2 + 4) + (2 + 4 + 6) + (4 + 6) + 2$ $\hat{S}^2 = S(S+1)\hat{R}^2$ and $\hat{S}_z = M_S\hat{R}$ and similarly for the <i>L</i> and <i>J</i> operators. For each term, <i>S</i> and <i>L</i> are fixed (1 and 2 for ³ D), and <i>M_S</i> and <i>M_L</i> run over their allowed values (for s appropriate for those values). There are 3 <i>J</i> values for ³ D (1, 2, and 3), and for each of these there are $(2J+1)M_J$ values.

- IV. A. In the 2nd case, the two estimates agree roughly within their combined standard errors; in the first, the more uncertain first value is almost 6 away from the 2nd. That is statistically highly unlikely, so the values are inconsistent.
 - B. 28.51370(29); 0.001095(6); -2(5) The last parameter is statistically insignificant.
- V. 27690 cm⁻¹ or 361.1 nm.