Chemistry 236
 Triple Point Study Problems -- Answers

1. c
2. c
3. $\Delta H_{\mathrm{m}, \mathrm{fus}}=\Delta H_{\mathrm{m}, \mathrm{sub}}-\Delta H_{\mathrm{m}, \mathrm{vap}}=6.859 \mathrm{~kJ} / \mathrm{mol}$.
4. The vapor pressure is determined by the coldest spot in the apparatus that is exposed to the vapor. Thus, heating the sample cell would lead to condensation of liquid in the vacuum line and pressure gage, and the vapor P would be determined by the cold spot in the line, wherever that happened to be. To measure vapor pressures above room T with this apparatus would require heating the line and gage to a temperature above that of the sample cell.
5. (1) 295 Torr (2) 117 Torr
6. One can find tabulated values (e.g., on p. 960 of Levine) for $\mathrm{H}_{2} \mathrm{O}(g)$ and $\mathrm{H}_{2} \mathrm{O}(l)$, but these are for the substances in their standard states at $25^{\circ} \mathrm{C}$, namely pure liquid water at $P=1$ bar and $\mathrm{H}_{2} \mathrm{O}(g)$ in the ideal gas standard state. As we will see later in Chemistry 231, the ideal-gas approximation will have little effect on our results, but the T of $25^{\circ} \mathrm{C}$ is far enough from the triple point to introduce significant differences. To convert from $25^{\circ} \mathrm{C}$ to $0.01^{\circ} \mathrm{C}$, we need the heat capacities of liquid and gaseous water. Then use Eqns. (5.18) and (5.19) of Levine (p. 151) to carry out the conversion.
7. From the CRC Handbook in the lab, the vapor pressures of water at $0^{\circ} \mathrm{C}$ and $5^{\circ} \mathrm{C}$ are 0.61129 and 0.87260 kPa , respectively. Using Eqn. (6) or (7), these values yield $\Delta H_{\mathrm{m}, \text { vap }}=44.966 \mathrm{~kJ} / \mathrm{mol}$. For comparison, the CRC Handbook also gives values for $\Delta H_{\mathrm{m}, \text { vap }}$ at $0^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}(45.054$ and $43.990 \mathrm{~kJ} / \mathrm{mol}$, respectively). If we assume our just-calculated value is for the middle $T, 2.5^{\circ} \mathrm{C}$, then we can compare it with the tabulated values by linearly interpolating on the latter.
Interpolating $1 / 10$ of the way between $0^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ yields $44.948 \mathrm{~kJ} / \mathrm{mol}$, which is within 0.02 $\mathrm{kJ} / \mathrm{mol}$ of our vapor- P-based value and probably within experimental error of both determinations.

From p. 961 of Levine, the calculated ΔH° for $l \rightarrow g$ is $44.012 \mathrm{~kJ} / \mathrm{mol}$, which is 0.022 $\mathrm{kJ} / \mathrm{mol}$ larger than the previously mentioned tabulated value for $\Delta H_{\mathrm{m}, \text { vap }}$ at $25^{\circ} \mathrm{C}$. This difference is probably partly a consequence of the ideal gas assumption behind the calculated value based on the Appendix in Levine and partly a reflection of unreported experimental uncertainty in results from different sources. Using the $C_{P, \mathrm{~m}}{ }^{\circ}$ values given in the Appendix and Eq. (5.19) of Levine, we obtain $44.951 \mathrm{~kJ} / \mathrm{mol}$ at $2.5^{\circ} \mathrm{C}$. This value is in close agreement with the two values determined just above, being closer to the interpolated result. Neglect of T-dependence in both $C_{P, \mathrm{~m}}{ }^{\circ}$ values, however, is still a source of error (but evidently not a large one).
9. Let $\Delta H_{\mathrm{m}}(T)=\Delta H_{\mathrm{m}, 0}+\Delta C_{p, 0}\left(T-T_{0}\right) \equiv a+b T, \mathrm{w} / a=\Delta H_{\mathrm{m}, 0}-\Delta C_{p, 0} T_{0}$ and $b=\Delta C_{p, 0}$. Substituting into Eq. (4), separating variables, and integrating both sides from T_{0} to T yields $R \ln \left(P / P_{0}\right)=b \ln \left(T / T_{0}\right)+a\left(1 / T_{0}-1 / T\right)$. This is valid for any T_{0}, and $\Delta H_{\mathrm{m}, 0}$ and $\Delta C_{p, 0}$ are the values of these quantities at that T_{0}.
10. (a) Yes; $\sigma_{d} / d>1$.
(b) $\quad 0.070(10)^{\circ} \mathrm{C}\left[=a\right.$ and $\left.\sigma_{a}\right]$
(c) $0.0701632,4.290986 \mathrm{e}-05,-0.000525418,5.87063 \mathrm{e}-06$

