Chemistry 236 Triple Point Study Problems -- Answers

- **1.** c **2.** c **4.** $H_{m,\text{fus}} = H_{m,\text{sub}} H_{m,\text{vap}} = 6.859 \text{ kJ/mol.}$
- 3. The vapor pressure is determined by the <u>coldest spot</u> in the apparatus that is exposed to the vapor. Thus, heating the sample cell would lead to condensation of liquid in the vacuum line and pressure gage, and the vapor *P* would be determined by the cold spot in the line, wherever that happened to be. To measure vapor pressures above room *T* with this apparatus would require heating the line and gage to a temperature above that of the sample cell.
- 6. (1) 295 Torr (2) 117 Torr
- 7. One can find tabulated values (*e.g.*, on p. 960 of Levine) for H₂O(*g*) and H₂O(*l*), but these are for the substances in their standard states at 25°C, namely pure liquid water at *P* = 1 bar and H₂O(*g*) in the ideal gas standard state. As we will see later in Chemistry 231, the ideal-gas approximation will have little effect on our results, but the *T* of 25°C is far enough from the triple point to introduce significant differences. To convert from 25°C to 0.01°C, we need the heat capacities of liquid and gaseous water. Then use Eqns. (5.18) and (5.19) of Levine (p. 151) to carry out the conversion.
- 8. From the CRC Handbook in the lab, the vapor pressures of water at 0° C and 5° C are 0.61129 and 0.87260 kPa, respectively. Using Eqn. (6) or (7), these values yield $H_{m,vap} = 44.966$ kJ/mol. For comparison, the CRC Handbook also gives values for $H_{m,vap}$ at 0° C and 25° C (45.054 and 43.990 kJ/mol, respectively). If we assume our just-calculated value is for the middle T, 2.5° C, then we can compare it with the tabulated values by linearly interpolating on the latter. Interpolating 1/10 of the way between 0° C and 25° C yields 44.948 kJ/mol, which is within 0.02 kJ/mol of our vapor-P-based value and probably within experimental error of both determinations.

From p. 961 of Levine, the calculated H° for l = g is 44.012 kJ/mol, which is 0.022 kJ/mol larger than the previously mentioned tabulated value for $H_{\rm m,vap}$ at 25°C. This difference is probably partly a consequence of the ideal gas assumption behind the calculated value based on the Appendix in Levine and partly a reflection of unreported experimental uncertainty in results from different sources. Using the $C_{P,\rm m}^{\circ}$ values given in the Appendix and Eq. (5.19) of Levine, we obtain 44.951 kJ/mol at 2.5°C. This value is in close agreement with the two values determined just above, being closer to the interpolated result. Neglect of T-dependence in both $C_{P,\rm m}^{\circ}$ values, however, is still a source of error (but evidently not a large one).

- 9. Let $H_{\rm m}(T) = H_{\rm m,0} + C_{p,0} (T-T_0)$ a+bT, w/ $a=H_{\rm m,0}-C_{p,0} T_0$ and $b=C_{p,0}$. Substituting into Eq. (4), separating variables, and integrating both sides from T_0 to T yields $R \ln (P/P_0) = b \ln(T/T_0) + a (1/T_0 1/T)$. This is valid for $\underline{\rm any}\ T_0$, and $H_{\rm m,0}$ and $C_{p,0}$ are the values of these quantities at that T_0 .
- 10. (a) Yes; d/d > 1.
 - (b) $0.070(10)^{\circ}$ C [= a and a]
 - (c) 0.0701632, 4.290986e–05, –0.000525418, 5.87063e–06