
Thermal Expansivity

In this experiment, thermal expansivity is determined from (1) measurements of volume (V)
as a function of T for fixed mass (dilatometry), and (2) measurements of density as a function of T
for fixed V (pycnometry).  In both cases a KNOWN substance (water) is used to calibrate the
measurement device, which is then used to measure an UNKNOWN.

Dilatometry Analysis

In the dilatometry measurements, mass is needed ONLY in the calibration phase.  The mass
of water is determined by difference weighing.  Then use the results you obtained in Problem Set 3,
where you fitted the precise volume/g data for water to a polynomial in T(˚C), to compute the V of
the water in your dilatometer at each T.  (This is easily done spreadsheet style, using, for example,
Formula Entry in KG.)  Your capillary h scale starts at something other than 0.0 (due to lack of
appropriate materials in the glass shop when these devices were made).  Subtract the lowest value
(h0) to put your h values on a scale that runs 0.00-15.00.  Then plot V vs. h' (= h – h0).  You should
observe a linear or nearly linear relation.  A fit of these data to a straight line will yield intercept Vb
(i.e., the volume at the lowest mark, h' = 0, or h = h0); the term linear in h' gives the volume Vc.
(Recall that the total volume is partitioned as V = Vb + Vc; see eq 5 in the Class Pak.)  HOWEVER,
you should experiment with higher-order fits of V(h') to ensure that the linear relation is suitable.

[The Class Pak notes that the bulb volume Vb is slightly T-dependent.  However, you can
verify that increasing T from 10˚C to 40˚C results in an increase of Vb by only ~0.01 mL.  This is
small enough to be of no significance in all but the most precise measurements, so you may ignore
the corrections for this T dependence in eq 6 and just assume a fixed (T-independent) Vb.]

The "unknowns" we use in this experiment (alcohols) have larger thermal expansivity than
water in the 10˚-40˚C range.  Thus, to span this full T range, you will have had to record data for
several different masses, since full scale on the capillary corresponds to only ~5˚.  You should have
recorded at least 5 h values for each fixed-mass data set.  Use your water calibration results to
convert these h readings to V values.  Then fit EACH of these data sets SEPARATELY to eq 4 (since
this equation assumes fixed mass).  In this fit, you specify Tr; this can be any T that you like, but to
obtain sensible results, it should be some T in the middle of the range of the data set in question.
(For example, if the data span the range 16.4˚-20.7˚C, then Tr = 19.0˚C is a reasonable choice.)  Vr,
a, b, ... are then adjustable parameters in such a fit and will have to be specified as such in your fit
function.  Note that Vr is the volume at T = Tr.  Also, if you fit to the suggested polynomial in
(T – Tr) given after eq 4, the coefficient (a) of the linear term is α at T = Tr.  You should experiment
with different orders of (T – Tr) to see how many terms are warranted.  [For small T ranges, a single
term a (T – Tr) will likely suffice.]

If for some reason you do not have enough h vs. T measurements in each fixed-mass data set
to fit to eq 4, you may still be able to obtain good estimates of α from your data.  For example, even
two values will suffice to estimate α from the fundamental definition of the derivative, (∂V/∂T)P ≈
(∆V/∆T)P.

The ultimate goal of the measurements is α as a function of T.  Your different fixed-mass
data sets will have provided α values and their uncertainties.  Plot these (with error bars) vs. T.  If
the results exhibit a smooth dependence, carry out a weighted fit to obtain a mathematical expression
for α = α(T).



Pycnometry Analysis

The fundamental determined property here is density = mass/V, so mass IS needed.  For our
modified pycnometers, V is not quite constant but is still known for each measurement.  This is
because we know V for the calibration mass of H2O and can calculate V for any other h value, since
we know the diameter of the capillary.  (Note:  Check the h scale against a ruler; there are several in
the lab.)  We are trying to obtain precise AND accurate ρ values here, so correction for the buoyancy
of air is needed, as described in the Class Pak.

In comparing your two calibrations of the bulb V, it is necessary to choose a common
reference.  This could be taken as any mark on the capillary, but the lowest mark is a particularly
convenient choice for defining the bulb volume Vb.  Then, for any measurement of h, the total V is
the sum of Vb and the extra volume contained in the capillary extension up to level h.

Equation 2 can be integrated to yield a result similar to that given in eq 3 for integration of eq
1.  Alternatively, in analogy to eq 4, we can assume that ρ can be expressed as

ρ = ρr exp[–g(T,Tr)] ,

where ρr is the density at T = Tr, and the function g is defined to go to zero when T = Tr.  α is thus
obtained as dg/dT.

Plot your density values vs. T.  Then fit these to the equation given just above, taking g as
a(T – Tr) + b(T – Tr)2 + ... .  Experiment with different fit orders.  The coefficient a of the linear
term can again be shown to be α at T = Tr.  Then refit your data for different Tr values, taking Tr as
your actual T values for the different density determinations.  In this way you will obtain α and its
uncertainty at each Tr.  Plot these (with error bars) vs. T for comparison with your dilatometry
results.  Obtain an expression for α as a function of T from the results of one of your fits to the
equation given above.


