Chemistry 236

Spectrophotometry Study Problems -- Answers

1. To derive Eq. (7), start with the exact expression (2) and set $[M] \approx[M]_{0}$. Then solve for $\mathrm{x}\left(=\left[\mathrm{I}_{2} \bullet \mathrm{M}\right]\right)$. Next substitute for x from the Beer-Lambert law, $\mathrm{x}=$ $A_{\mathrm{X}} /\left(\varepsilon_{\mathrm{x}} \mathrm{I}\right)$, invert the resulting equation, and rearrange terms to obtain (7). The version in Question 3 is then obtained by multiplying through by $[\mathrm{M}]_{0}$. In general you would not get identical results analyzing the data these two different ways, because they effectively weight the data differently.
2. 0.30 M in $\mathrm{y} \& 0.64 \mathrm{M}$ in z .
3. (a) $I / I_{0}=10^{-A}=0.2205$.
(b) $A=\varepsilon c \mid \rightarrow c=6.7 \times 10^{-5} \mathrm{M}$.
(c) $\left[\mathrm{I}_{2}\right]_{\mathrm{eq}}=\left[\mathrm{I}_{2}\right]_{0}-\left[\mathrm{I}_{2} \cdot \mathrm{M}\right]_{\mathrm{eq}}$.
$\left[\mathrm{I}_{2}\right]_{0}=3.00 / 5.00 \times 0.00155 \mathrm{M}=9.3 \times 10^{-4} \mathrm{M} \rightarrow$ $\left[I_{2}\right]_{\text {eq }}=8.63 \times 10^{-4} \mathrm{M}$.
Similarly, $[\mathrm{M}]_{0}=0.132 \mathrm{M}$ and $[\mathrm{M}]_{\mathrm{eq}}=0.1319 \mathrm{M}$.
(d) $\quad K_{c}=\frac{\left[\mathrm{I}_{2} \bullet \mathrm{M}\right]_{\mathrm{eq}}}{[\mathrm{M}]_{\mathrm{eq}}\left[\mathrm{I}_{2}\right]_{\mathrm{eq}}}=0.588$.
4. Use the van't Hoff equation (e.g., Eq. 6.39 in Levine, or p. 460 in ONF) to obtain ΔH°. Then use $R T \ln K=-\Delta G^{\circ}$ (see, e.g., p. 457 in ONF) to calculate ΔG° for either of the two $T \mathrm{~s}$. Finally use the relation $\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$ for a process at constant T (see, e.g., p. 454 in ONF) to obtain ΔS°.
$\Delta H^{\circ}=-14.0 \mathrm{~kJ} / \mathrm{mol}$;
$\Delta G^{\circ}=0.0$ at $22.0^{\circ} \mathrm{C}$
$\Delta S^{\circ}=-47.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
5. (a) $T=0.1169 ; \varepsilon=809.7 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$.
(b) At equilibrium, $\left[\mathrm{I}_{2}\right]=5.286 \times 10^{-4} \mathrm{M},[\mathrm{M}]=3.923 \times 10^{-4} \mathrm{M}, \&\left[\mathrm{I}_{2} \bullet \mathrm{M}\right]=$ $1.90{ }_{8} \times 10^{-4} \mathrm{M}$. Thus, $K_{c}=920 \mathrm{~L} / \mathrm{mol}$.
