Pledge and signature:

Note: If you want your paper returned folded (i.e., score concealed), please print your name on the back.
In a typical adsorption experiment, the sample cell is found to have a volume of $\mathbf{1 7 . 3} \mathbf{c m}^{\mathbf{3}}$ and the vacuum manifold (including Baratron gauge) $72.7 \mathrm{~cm}^{3}$. The manifold is charged with N_{2} to a pressure of 84.1 Torr. Then the valve to the cell (under vacuum) is opened, with the cell containing $1.0 \mathrm{~cm}^{3}$ of silica gel and the whole system at $T=295 \mathrm{~K}$. After the new P is measured $\left(P_{2}\right)$, the cell is cooled with LN2, dropping the P to 8.5 Torr $\left(P_{3}\right)$. The "cold volume" may be taken to be $\mathbf{6 . 6}$ $\mathbf{c m}^{3}$. $\left[R=0.082058 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} ; 1 \mathrm{~mol}=22414 \mathrm{STP} \mathrm{cc} ; \mathrm{LN} 2 T=77 \mathrm{~K}\right.$.]

1. (3) Calculate P_{2} (in Torr).
2. (3) Calculate the amount of N_{2} initially placed in the manifold, in STP cc.
3. (6) Calculate the amounts of N_{2} adsorbed and remaining in the gas phase at the end.
