Chemistry 236 -- Quiz 6

October 15, 2003 — Spectrophotometric Determination of K

Pledge and signature:

Note: If you want your paper returned folded (*i.e.*, score concealed), please print your name on the back.

- 1. (3) In the derivation of the expression we will use to analyze our data to obtain the equilibrium constant *K* and the molar absorptivity $_{x}$ for the complex, we made an important assumption. Which of the following was it?
 - a. [M] [M]₀, because [M] doesn't change during the reaction.
 - b. $[I_2]$ $[I_2]_0$, because $[I_2]$ doesn't change during the reaction.
 - c. $[M] = [M]_0$ and $[I_2] = [I_2]_0$, because neither reagent's concentration changes during the reaction.
 - d. [M] $[M]_0$, because $[M]_0$ will be chosen to be >> $[I_2]_0$.
 - e. [M] [I₂], because we will choose starting conditions such that $[M]_0 = [I_2]_0$.
- 2. (3) Our derivation yielded a straight-line relationship permitting us to extract *K* and $_x$ from an appropriate plot of "*y*" *vs.* "*x.*" What are "*x*" and "*y*" here?

a. <i>x</i>	[M] ₀ ; y	$[I_2]_0 + /A_x$	b. <i>x</i>	$[M]_0^{-1}; y$	$[I_2]_0 \cdot /A_x$	
c. <i>x</i>	[M] ₀ ; y	$A_{\rm x} / [{\rm I}_2]_0$	d. <i>x</i>	$[M]_0^{-1}; y$	$A_{\rm X} / [{\rm I}_2]_0$	e. none of these

3. (3) The equilibrium constant *K* is found to be twice as large at 40°C as at 20°C. Calculate H° for the reaction, under the usual assumption that H° is independent of *T* over this range. [*R* = 8.3145 J mol⁻¹ K⁻¹.]

a. -0.23 kJ/mol b. 0.23 kJ/mol c. -26 kJ/mol d. 26 kJ/mol e This cannot be determined without additional information. f. none of these

4. (3) The equilibrium A + B C is studied under conditions that permit direct determination of [A] and [B]. The experiment is initiated by mixing together solutions of A and B containing no C. *K* is determined to be 12.3 L mol⁻¹, and in one particular run, $[A]_{eq} = 0.0567$ M and $[B]_{eq} = 0.0321$ M. What was the value of $[A]_0$ for this run?

a.	0.0224 м	b. 0.0321 м	с. 0.0567 м	d. 0.0791 м	
e	This cannot be	determined without a	dditional information	•	f. none of these