Pledge and signature:

Note: If you want your paper returned folded (i.e., score concealed), please print your name on the back.

1. (3) A particular Baratron gauge (capacitance manometer) is carefully zeroed (i.e., made to read 0.00 V when $P=0$). It is then calibrated at a true pressure of 99871 Pa , where it reads 7.77 V . Give the calibration formula for the gauge, in the form $P(\mathrm{~Pa})=f(V)$.
a. $P=7.77 \mathrm{~V}$
b. $P=99871 \mathrm{~V}$
c. $P=7.78 \times 10^{-5} V$
d. $P=1285 \mathrm{~V}$
e. none of these

$$
[P=99871 \mathrm{~Pa} / 7.77 \mathrm{~V} \times V=12853(\mathrm{~Pa} / \mathrm{V}) V]
$$

2. (3) Student records a data point on the sublimation curve of ice, where the thermistor reads $-24.1^{\circ} \mathrm{C}$. If the calibration data are as shown in the accompanying graph, what is the corrected T ?
a. $-24.5^{\circ} \mathrm{C}$
b. $-23.7^{\circ} \mathrm{C}$
c. $0.4^{\circ} \mathrm{C}$
d. $-0.5^{\circ} \mathrm{C}$
e. This cannot be determined without additional information.

3. (3) A gas is connected simultaneously to a mercury manometer, where it yields a height difference of 23.2 mm of Hg , and to another manometer containing an unknown fluid, where it displays a level difference of 244 mm . Both manometers have their reference arms evacuated $(P=0)$. If the density of Hg is $13.59 \mathrm{~g} / \mathrm{mL}$, what is the density of the unknown fluid?
a. $0.095_{1} \mathrm{~g} / \mathrm{mL}$
b. $0.77_{4} \mathrm{~g} / \mathrm{mL}$
c. $1.292 \mathrm{~g} / \mathrm{mL}$
d. $10.5_{2} \mathrm{~g} / \mathrm{mL}$
e. none of these
4. (3) A particular thermistor displays a relative sensitivity of $4.05 \% / \mathrm{K}$ at $0^{\circ} \mathrm{C}$.
a. At $100^{\circ} \mathrm{C}$, will its relative sensitivity be higher or lower? Lower
b. Calculate it.

As I mentioned in class, this is a variation on Study Problem 6. Use the given relative sensitivity to calculate B in the calibration formula, $R=R_{\infty} \exp (B / T)$. Take R to decrease by 4.05% on going from $0^{\circ} \mathrm{C}(273.15 \mathrm{~K})$ to $1^{\circ} \mathrm{C}(274.15)$, which yields $B=$ 3096 K . Then use this value to calculate the ratio of R at 374.15 K to that at 373.15 K . This ratio is 0.978 , giving 2.2% (2.19 to 3 figures) relative sensitivity at $100^{\circ} \mathrm{C}$.

