Chemistry 236 -- Practice Quiz 7 October 22, 2003 — Freezing Point Depression

Questions 1-3 concern the precipitation of $Mg(OH)_2(s)$ when solutions of $MgCl_2$ and NaOH are mixed. Assume that volumes are additive.

1.	150 mL of 0.12 M MgCl ₂ is mixed with 50 mL 0.84 M NaOH.	Which ions remain in solution in
	significant concentration at the end of the reaction?	

b. Mg²⁺, Cl⁻, Na⁺

c. OH-, Cl-, Na+

a. Mg²⁺, Cl⁻, OH⁻ d. Mg²⁺, Na⁺, OH⁻ d. Mg²⁺, Na⁺, OH⁻

e. All four ions remain in significant concentration.

What is the concentration of the <u>non</u>-spectator ion remaining in solution?

a. 0.006 M

b. 0.024 M

c. 0.030 M

d. 0.12 M

e. none of these

Using the simplest theory (i.e., ignoring activity coefficients), predict the freezing point of the resulting solution. Assume molality = molarity for this dilute solution. $(k_f = 1.855^{\circ}\text{C})$

a. -0.78°C

b. −0.95°C

c. -1.28°C

d. -3.90° C

e. none of these

An aqueous solution of a weak monoprotic acid having a concentration of 0.15 m° yields a freezing point depression of 0.37 K. What is the equilibrium constant $K_{\rm m}$ for this acid?

An aqueous solution of ZnSO₄ is 0.063 m° in concentration and exhibits a freezing point depression of 0.150 K. What are the values of and a_A for this solution?