Chemistry 236 -- Practice Quiz 6

October 15, 2003 - Spectrophotometric Determination of K

1. Our treatment of the stoichiometry for the $\mathrm{I}_{2}+\mathrm{M} \leftrightarrow \mathrm{I}_{2} \bullet \mathrm{M}$ reaction yielded a straight-line relationship permitting us to extract K and ε_{x} from an appropriate plot of " y " vs. " x." If this expression is written as $y=a+b x$, the equilibrium constant K is given by
a. a / b
b. b / a
c. $a \times b$
d. $1 / a$
e. none of these
2. For the following reaction, $K=8.6 \times 10^{19}$ at $25^{\circ} \mathrm{C}$ and $K=1.09 \times 10^{15}$ at $125^{\circ} \mathrm{C}$:

$$
\mathrm{Cl}_{2}(g)+\mathrm{F}_{2}(g) \rightleftarrows 2 \mathrm{ClF}(g)
$$

Assuming that ΔH° and ΔS° are independent of T over this range, calculate ΔS°.
a. $3.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
b. $8.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
c. $11.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
d. $-111.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
e. $-113.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
3. The reaction $\mathrm{A}+\mathrm{B} \leftrightarrow \mathrm{C}$ is studied experimentally by mixing together solutions of A and B and determining concentrations at equilibrium. 10.0 mL of 0.036 M A is mixed with 5.0 mL of 0.126 M B , and at equilibrium $[\mathrm{C}]$ is found to be 0.0094 M . What is the value of K for this reaction?
a. $2.1 \mathrm{~L} \mathrm{~mol}^{-1}$
b. $3.0 \mathrm{~L} \mathrm{~mol}^{-1}$
c. $9.3 \mathrm{~L} \mathrm{~mol}^{-1}$
d. $19.7 \mathrm{~L} \mathrm{~mol}^{-1}$
e. none of these
4. In the preceding reaction, A and B are both monitored spectrophotometrically. B alone absorbs at 600 nm , with $\varepsilon_{\mathrm{B}, 600}=550 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$, while both A and B absorb at 400 nm , with $\varepsilon_{\mathrm{A}, 400}=800$ $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}$ and $\varepsilon_{\mathrm{B}, 400}=270 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$. C has negligible absorption at both wavelengths. A reaction mix yields $A_{600}=0.89$ and $A_{400}=1.03$ for a $1.00-\mathrm{cm}$ path length. If the initial concentration of A was $[\mathrm{A}]_{0}=1.00 \times 10^{-3} \mathrm{M}$, what is K for the reaction?

