1. Our treatment of the stoichiometry for the $I_2 + M$ $I_2 \cdot M$ reaction yielded a straight-line relationship permitting us to extract *K* and $_x$ from an appropriate plot of "*y*" *vs.* "*x.*" If this expression is written as y = a + bx, the equilibrium constant *K* is given by

a. a/b b. b/a c. $a \times b$ d. 1/a e. none of these

2. For the following reaction, $K = 8.6 \times 10^{19}$ at 25°C and $K = 1.09 \times 10^{15}$ at 125°C:

$$Cl_2(g) + F_2(g) = 2 ClF(g)$$

Assuming that H° and S° are independent of *T* over this range, calculate S° .

a. $3.7 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$ b. $8.5 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$ c. $11.3 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$ d. $-111.2 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$ e. $-113.7 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$

3. The reaction A + B C is studied experimentally by mixing together solutions of A and B and determining concentrations at equilibrium. 10.0 mL of 0.036 M A is mixed with 5.0 mL of 0.126 M B, and at equilibrium [C] is found to be 0.0094 M. What is the value of *K* for this reaction?

a. $2.1 \text{ L} \text{ mol}^{-1}$ b. $3.0 \text{ L} \text{ mol}^{-1}$ c. $9.3 \text{ L} \text{ mol}^{-1}$ d. $19.7 \text{ L} \text{ mol}^{-1}$ e. none of these

4. In the preceding reaction, A and B are both monitored spectrophotometrically. B alone absorbs at 600 nm, with $_{B,600} = 550 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$, while both A and B absorb at 400 nm, with $_{A,400} = 800 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$ and $_{B,400} = 270 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$. C has negligible absorption at both wavelengths. A reaction mix yields $A_{600} = 0.89$ and $A_{400} = 1.03$ for a 1.00-cm path length. If the initial concentration of A was $[A]_0 = 1.00 \times 10^{-3} \text{ M}$, what is *K* for the reaction?