

Chemistry 236 -- Practice Quiz 4
October 1, 2003 — Triple Point: Phase Equilibrium

1. The normal boiling point of oxygen (O_2) is -183°C . A vessel standing open in the laboratory at atmospheric pressure and initially full of liquid oxygen is now half full. Therefore the temperature of the remaining liquid oxygen must be
 - a. below -183°C .
 - b. -183°C .
 - c. between -183°C and 0°C .
 - d. above 0°C .
 - e. This cannot be predicted.

2. Consider the apparatus pictured to the right. The 250-mL chamber is filled with $N_2(g)$ at 25°C to a pressure of 2.00 atm. The 1.000-L chamber is filled with $O_2(g)$ at 25°C to a pressure of 4.50 atm. If the center valve (b) is opened and no temperature change is observed, the final pressure in the apparatus will be
 - a. 0.400 atm
 - b. 3.60 atm
 - c. 4.00 atm
 - d. 6.5 atm
 - e. none of these

3. For water near its triple point, $H_{\text{fus}} = 6.0 \text{ kJ mol}^{-1}$ and $H_{\text{vap}} = 45.0 \text{ kJ mol}^{-1}$. Thus H for the sublimation process, $\text{H}_2\text{O}(s) \rightarrow \text{H}_2\text{O}(g)$, is
 - a. 6.0 kJ mol^{-1}
 - b. 39.0 kJ mol^{-1}
 - c. 45.0 kJ mol^{-1}
 - d. 51.0 kJ mol^{-1}
 - e. This cannot be determined from the available information.

4. Consider the accompanying figure, which shows the natural log of the vapor pressure of Br_2 as a function of $1/T$, for both solid and liquid phases. Using this figure, estimate (A) the triple point T and P ; (B) the normal boiling point T ; (C) $H_{\text{m,vap}}$; (D) $H_{\text{m,sub}}$; and (E) $H_{\text{m,fus}}$.

