

Chemistry 236 -- Practice Quiz 2
September 10, 2003 — Kinetics: Inversion of Sucrose

1. (3) A solution is prepared by dissolving 13.71 g of smactose in water and bringing the volume to 0.100 L in a volumetric flask. The optical rotation observed at D for this solution in a 0.500-m polarimetry cell is -34.7° . Calculate the specific rotation of smactose (units $\text{deg mL g}^{-1} \text{dm}^{-1}$) at this wavelength and T .
a. -0.95 b. -23.8 c. -50.6 d. -126.5 e. none of these
2. 70.0 mL of 3.0 M Na_2SO_4 is mixed with 30.0 mL of 1.0 M NaCl . Assuming the volumes are additive, the resulting concentration of sodium ion is:
a. 2.0 M b. 2.4 M c. 4.0 M d. 4.5 M e. none of these
3. If concentrations are expressed in molarity and the time is in seconds, what are the units of the rate constant for the following rate law: $\text{rate} = k \frac{[\text{A}]^3[\text{B}]}{[\text{C}]}$?
a. $\text{mol}^3 \text{L}^{-3} \text{s}^{-1}$ b. $\text{L}^3 \text{mol}^3 \text{s}$ c. $\text{L}^3 \text{mol}^{-3} \text{s}^{-1}$ d. $\text{mol L}^{-1} \text{s}^{-1}$ e. none of these
4. The reaction, $2 \text{A} + 2 \text{B} \rightarrow \text{C} + \text{D}$, has a rate constant of $6.0 \times 10^{-3} \text{ L}^2 \text{mol}^{-2} \text{s}^{-1}$ at 0°C . The order of this reaction is
a. 1 b. 2 c. 3
d. indeterminate without additional information. e. none of these
5. For a certain reaction, a plot of $\ln [\text{A}]$ versus t gives a straight line with a slope of -1.46 s^{-1} and a y -intercept of 4.30. The rate constant for this reaction is
a. 0.68 s b. -1.46 s^{-1} c. 1.46 s^{-1} d. 4.30 s^{-1}
e. This cannot be determined without additional information.
6. Of the expressions given below for $t_{1/2}$, which is correct for a reaction which follows the integrated rate law,
$$\frac{[\text{B}][\text{B}]_0^2}{2[\text{B}]_0 - [\text{B}]} = k t$$

a. $t_{1/2} = \frac{[\text{B}][\text{B}]_0^2}{2[\text{B}]_0 - [\text{B}]}$ b. $t_{1/2} = \frac{[\text{B}][\text{B}]_0^2}{k(2[\text{B}]_0 - [\text{B}])}$ c. $t_{1/2} = \frac{[\text{B}]_0^2}{3k}$
d. A half-life cannot be defined for a reaction having this integrated rate law.
e. none of these
7. As a good rule of thumb, many reactions double in speed for a 10°C increase in T at room temperature. Taking the two temperatures to be 20°C and 30°C , the activation energy for such reactions would be
a. 0.35 kJ mol^{-1} b. 6.2 kJ mol^{-1} c. 22 kJ mol^{-1}
d. 51 kJ mol^{-1} e. 148 kJ mol^{-1}
8. An acid-catalyzed reaction has a rate constant of $0.0434 \text{ L mol}^{-1} \text{min}^{-1}$. A reaction is initiated by mixing HCl with the other reactant to give an acid molarity of 1.3. What is the half-life of the reaction?
a. 0.056 min b. 12.3 min c. 17.7 min
d. This cannot be determined without additional information. e. none of these