Chemistry 236 -- Practice Quiz 2

September 10, 2003 - Kinetics: Inversion of Sucrose

1. (3) A solution is prepared by dissolving 13.71 g of smactose in water and bringing the volume to 0.100 L in a volumetric flask. The optical rotation observed at λ_{D} for this solution in a $0.500-\mathrm{m}$ polarimetry cell is -34.7°. Calculate the specific rotation of smactose (units deg $\mathrm{mL} \mathrm{g}^{-1} \mathrm{dm}^{-1}$) at this wavelength and T.
a. -0.95
b. -23.8
c. -50.6
d. -126.5
e. none of these
2. 70.0 mL of $3.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ is mixed with 30.0 mL of 1.0 M NaCl . Assuming the volumes are additive, the resulting concentration of sodium ion is:
a. 2.0 M
b. 2.4 M
c. 4.0 M
d. 4.5 M
e. none of these
3. If concentrations are expressed in molarity and the time is in seconds, what are the units of the rate constant for the following rate law: rate $=k \frac{[\mathrm{~A}]^{3}[\mathrm{~B}]}{[\mathrm{C}]}$?
a. $\mathrm{mol}^{3} \mathrm{~L}^{-3} \mathrm{~s}^{-1}$
b. $\mathrm{L}^{3} \mathrm{~mol}^{3} \mathrm{~s}$
c. $\mathrm{L}^{3} \mathrm{~mol}^{-3} \mathrm{~s}^{-1}$
d. $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$
e. none of these
4. The reaction, $2 \mathrm{~A}+2 \mathrm{~B} \rightarrow \mathrm{C}+\mathrm{D}$, has a rate constant of $6.0 \times 10^{-3} \mathrm{~L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$ at $0^{\circ} \mathrm{C}$. The order of this reaction is
a. 1
b. 2
c. 3
d. indeterminate without additional information.
e. none of these
5. For a certain reaction, a plot of $\ln [\mathrm{A}]$ versus t gives a straight line with a slope of $-1.46 \mathrm{~s}^{-1}$ and a $y-$ intercept of 4.30. The rate constant for this reaction is
a. 0.68 s
b. $-1.46 \mathrm{~s}^{-1}$
c. $1.46 \mathrm{~s}^{-1}$
d. $4.30 \mathrm{~s}^{-1}$
e. This cannot be determined without additional information.
6. Of the expressions given below for $t_{1 / 2}$, which is correct for a reaction which follows the integrated rate law,

$$
\frac{[\mathrm{B}][\mathrm{B}]_{0}^{2}}{2[\mathrm{~B}]_{0}-[\mathrm{B}]}=k t
$$

a. $t_{1 / 2}=\frac{[\mathrm{B}][\mathrm{B}]_{0}^{2}}{2[\mathrm{~B}]_{0}-[\mathrm{B}]}$
b. $t_{1 / 2}=\frac{[\mathrm{B}][\mathrm{B}]_{0}^{2}}{k\left(2[\mathrm{~B}]_{0}-[\mathrm{B}]\right)}$
c. $t_{1 / 2}=\frac{[\mathrm{B}]_{0}^{2}}{3 k}$
d. A half-life cannot be defined for a reaction having this integrated rate law.
e. none of these
7. As a good rule of thumb, many reactions double in speed for a $10^{\circ} \mathrm{C}$ increase in T at room temperature. Taking the two temperatures to be $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$, the activation energy for such reactions would be
a. $0.35 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b. $6.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c. $22 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d. $51 \mathrm{~kJ} \mathrm{~mol}^{-1}$
e. $148 \mathrm{~kJ} \mathrm{~mol}^{-1}$
8. An acid-calalyzed reaction has a rate constant of $0.0434 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$. A reaction is initiated by mixing HCl with the other reactant to give an acid molarity of 1.3 . What is the half-life of the reaction?
a. 0.056 min
b. 12.3 min
c. 17.7 min
d. This cannot be determined without additional information.
e. none of these

