1. A quantity is known to follow a linear relationship, $y=a+b x$. If $y=-1.5$ when $x=0.2$ and $y=$ 111.7 when $x=8.9$, what are the values of a and b ?
a. $a=-2.5 ; b=5.0$
b. $a=-3.5 ; b=10.0$
c. $a=-4.0 ; b=12.7$
d. $a=-4.1 ; b=13.0$
e. none of these
2. According to the accompanying calibration graph, if the true temperature is $20.0^{\circ} \mathrm{C}$, what value does the thermistor read?
a. $-0.2^{\circ} \mathrm{C}$
b. $0.2^{\circ} \mathrm{C}$
c. $20.0^{\circ} \mathrm{C}$
d. $19.8^{\circ} \mathrm{C}$
e. $20.2^{\circ} \mathrm{C}$
3. Refer to the accompanying figure of three connected Hg manometers. If atmospheric pressure is 754 torr, $h_{1}=111 \mathrm{~mm}, h_{2}=83 \mathrm{~mm}$,
 $h_{3}=192 \mathrm{~mm}$, and $h_{4}=289 \mathrm{~mm}$, what are the pressures P_{1} and P_{2} (in Torr)?
a. $865 \& 948$
b. $948 \& 659$
c. $948 \& 851$
d. $560 \& 849$
e. $P_{1}=948$ Torr; P_{2} cannot be determined.
4. A particular thermistor has a resistance of $5.0 \mathrm{k} \Omega$ at $0^{\circ} \mathrm{C}$. Therefore, its resistance at 200 K must be
a. higher
b. lower
c. This depends on whether ΔE is positive or negative.

5. If barometers used water as the operating fluid, a weather barometer would need to be about how tall? [$1.00 \mathrm{~m}=39.37 \mathrm{in}$.]
a. 5 ft
b. 15 ft
c. 40 ft
d. 100 ft
e. none of these
6. Besides the size problem, can you think of any other reason why water might be an unwise choice for a barometer?
a. It is transparent.
b. It has significant vapor pressure.
c. Mosquitoes can breed in $\mathrm{H}_{2} \mathrm{O}$ but not in Hg .
d. All of the above
e. None of the above
