Physisorption

A. Theory - Chemisorption: The Langmuir Isotherm

Theory for physisorption (the BET isotherm - for weak, or physical adsorption) is beyond the scope of this course. However, many elements of the theory arise also in the simpler theory of chemisorption (for strong binding to surfaces). Thus we will examine chemisorption.

1. Assumptions: (a) one available adsorption site for each adsorbed molecule, and one adsorbed layer; (b) rate of adsorption $=$ rate of desorption.
2. Definitions:
(a) $N=$ \# sites; $\square=$ fractional occupancy.
(b) $k_{a}=$ adsorption rate constant; $k_{d}=$ desorption rate constant; $P=$ gas pressure.
3. Rates: \quad adsorption $=k_{a} P(1-\square) N$; desorp. $=k_{d} \square N$
4. Results: $\quad \square=k_{a} P /\left(k_{d}+k_{a} P\right)=b P /(1+b P) ; b \equiv k_{a} / k_{d}$.
5. Application: low $P-\square \quad P$; high $P-\square \square 1$;
$\square \equiv v / v_{\text {monolayer }} \square \quad v=v_{\mathrm{m}} b P /(1+b P)$.

B. Physisorption - BET Model

1. Differences: (a) Binding interactions much weaker;
(b) Multiple adsorption layers permitted;
(c) 1st adsorption layer different from others.
2. Results: $\quad v=\frac{v_{m} c x}{(1-x)[1+(c-1) x]}$
$x=P / P_{0}\left(P_{0}=\right.$ vapor $\left.P\right) ; c=$ constant.
C. Linearization
3. Not really necessary, with nonlinear LS available; but still often done.
4. Langmuir: $\quad 1 / v=1 / v_{\mathrm{m}}+1 /\left(v_{\mathrm{m}} b P\right)$
5. BET:

$$
\frac{x}{v(1-x)}=\frac{1}{v_{m} c}+\frac{(c-1) x}{v_{m} c}
$$

D. Measurements

1. V Calibration: Need Vs of vacuum system parts, and "cold volume" of cell; start with calibration cell of known V and use $P_{1} V_{1}=P_{2} V_{2}$ (Boyle's Law).
2. T of bath: Measure P_{0} of liq $\mathrm{N}_{2} \square$ get T of bath.
3. v :

Add gas to vacuum manifold \& measure P; open valve to cell, equilibrate, remeasure P; repeat for each data point.
4. units: \quad Traditionally v is given in STP cm^{3}.
E. Analysis

1. Analyze using KG to fit both versions of equation.
2. Can treat P_{0} as an adjustable parameter, or as known.

F. Illustrations

(Delete some high-P points)

L-V Equilibrium in a Binary System

A. Ideal Solution Theory (Raoult's Law)

1. $P_{i, \mathrm{id}}=x_{i, \ell} P_{i}^{*}(T) \quad x=$ mole fraction; $\ell=$ liq. $;{ }^{*}=$ pure;

$$
i=\mathrm{A} \text { or } \mathrm{B} \text { for binary system. }
$$

2. Typically used for mixtures of volatile components.
3. Far less reliable than ideal gas theory for gases.
4. BUT, R's Law does hold for component A when $x_{\mathrm{A}, \ell} \square 1$.
5. Then Henry's Law holds for other component:

$$
P_{\mathrm{B}}=k_{\mathrm{H}, \mathrm{~B}} x_{\mathrm{B}, \ell} \quad\left(\text { as } x_{\mathrm{A}, \ell} \square 1\right)
$$

B. Real Solution

1. $P_{i}=a_{i} P_{i}^{*}(T)$, with $a_{i}=\square x_{i, \ell} \quad$ [activity \& act. coef.]
2. $\square \square 1$ as $x_{i, \ell} \square 1$, so $a_{i} \square x_{i, \ell}$.
3. This is called Convention I in Levine.
4. Vapor: $\quad P_{i}=x_{i, v} P \quad$ (Dalton's Law of Partial $P \mathrm{~s}$)

C. Deviations from Ideality

1. Accommodated by activity coefficient "fudge factor."
2. Distinguish positive and negative deviations.
3. Extreme \square azeotropes, compound formation, immiscibility.

D. Experiment

1. Use refractive index to determine mixture compositions.
2. Prepare calibration curve by measuring RI for several (8-10) prepared samples. (Start with 6 and expand.)
3. Starting with mixture on vacuum line, establish $\ell-v$ equilibrium, measuring P and capturing $\sim 2 \mathrm{~L}$ of vapor in storage bulb.
4. Transfer vapor to sample cell by freezing out with liq N_{2}.
5. Measure RI for both samples -- but allow to warm to room T first. (The composition of the ℓ sample changes with vaporization.)
6. Try to get results for 6 mixtures, plus both pure components (P^{*} only); but 4 mixtures will suffice if pressed for time.
7. In the estimation of \square_{A} and \square_{B}, data noise tends to be amplified; follow the fitting procedures and use your smooth fitted curves for this determination.

Today's Practice Quiz

1. If 1.0 gal of gasoline powers a car for 35 miles, then driving under the same conditions, 5.0 gal should power the same car for
a. 7 miles
b. 35 miles
c. 175 miles
d. 350 miles
e. none of these
2. Suppose that 1.0 gal of gasoline powers a car for 30 miles. A second fuel has a combustion energy content 50% greater than that of gasoline. How much of this second fuel would be needed to power the car for 180 miles, driving under the same conditions:
a. 1.0 gal
b. 4.0 gal
c. 6.0 gal
d. 9.0 gal
e. none of these
3. Still comparing these two fuels, if 1.00 g of gasoline raises the temperature of 1.00 kg of water by 2.00 K , by how much would 0.80 g of the second fuel raise the temperature of 2.00 kg of water?
a. 0.50 K
b. 1.20 K
c. 2.40 K
d. 3.00 K
e. none of these
4. Calculate $\square n_{\mathrm{g}}$ for the combustion of 1.00 mol of n-propanol $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\right)$ at $25^{\circ} \mathrm{C}$ to produce $\mathrm{CO}_{2}(g)$ and $\mathrm{H}_{2} \mathrm{O}(\ell)$.
a. 0.0 mol
b. 1.0 mol
c. 1.5 mol
d. 2.5 mol
e. none of these
5. The heat exchanged with the surroundings in a process carried out at constant pressure is
a. w
b. $\square H$
c. $\square E$
d. $C_{P} \square T$
e. none of these
