Physisorption

A. Theory — Chemisorption: The Langmuir Isotherm

Theory for *physisorption* (the BET isotherm — for weak, or physical adsorption) is beyond the scope of this course. However, many elements of the theory arise also in the simpler theory of *chemisorption* (for strong binding to surfaces). Thus we will examine chemisorption.

- Assumptions: (a) one available adsorption site for each adsorbed molecule, and one adsorbed layer; (b) rate of adsorption = rate of desorption.
- 2. *Definitions*: (a) N = # sites; $\theta =$ fractional occupancy. (b) $k_a =$ adsorption rate constant; $k_d =$ desorption rate constant; P = gas pressure.
- 3. *Rates*: adsorption = $k_a P (1 \theta) N$; desorp. = $k_d \theta N$
- 4. *Results*:
- 5. Application: low $\theta \equiv$

$$\theta = k_a P/(k_d + k_a P) = bP/(1 + bP); b \equiv k_a/k_d.$$

$$low P - \theta \propto P; high P - \theta \rightarrow 1; \theta \equiv v/v_{monolayer} \rightarrow v = v_{m} bP/(1 + bP).$$

- **B.** Physisorption BET Model
 - Differences: (a) Binding interactions much weaker;
 (b) Multiple adsorption layers permitted;
 (c) 1st adsorption layer different from others.

2. *Results*:
$$v = \frac{v_m c x}{(1-x) [1+(c-1) x]}$$

$$x = P/P_0$$
 (P_0 = vapor P); c = constant.

C. Linearization

- 1. Not really necessary, with nonlinear LS available; but still often done.
- 2. Langmuir: $1/v = 1/v_{\rm m} + 1/(v_{\rm m} b P)$

3. BET:
$$\frac{x}{v(1-x)} = \frac{1}{v_m c} + \frac{(c-1)x}{v_m c}$$

D. Measurements

- 1. *V Calibration*: Need *V*s of vacuum system parts, and "cold volume" of cell; start with calibration cell of known *V* and use $P_1V_1 = P_2V_2$ (Boyle's Law).
- 2. *T of bath*: Measure P_0 of liq $N_2 \rightarrow \text{get } T$ of bath.
- 3. *v*: Add gas to vacuum manifold & measure *P*; open valve to cell, equilibrate, remeasure *P*;. repeat for each data point.
- 4. *units*: Traditionally v is given in STP cm³.

E. Analysis

- 1. Analyze using KG to fit both versions of equation.
- 2. Can treat P_0 as an adjustable parameter, or as known.

F. Illustrations

(Delete some high-P points)

L-V Equilibrium in a Binary System

A. Ideal Solution Theory (Raoult's Law)

- 1. $P_{i,id} = x_{i,\ell} P_i^*(T)$ $x = \text{mole fraction}; \ \ell = \text{liq.};^* = \text{pure};$ $i = A \text{ or } B \text{ for$ *binary* $system.}$
- 2. Typically used for mixtures of volatile components.
- 3. Far less reliable than ideal gas theory for gases.
- 4. BUT, R's Law *does* hold for component A when $x_{A,\ell} \rightarrow 1$.
- 5. Then *Henry's Law* holds for other component: $P_{\rm B} = k_{\rm H,B} x_{\rm B,\ell} \quad (\text{as } x_{\rm A,\ell} \rightarrow 1)$

B. Real Solution

- 1. $P_i = a_i P_i^*(T)$, with $a_i = \gamma_i x_{i,\ell}$ [activity & act. coef.]
- 2. $\gamma_i \rightarrow 1 \text{ as } x_{i,\ell} \rightarrow 1, \text{ so } a_i \rightarrow x_{i,\ell}.$
- 3. This is called *Convention I* in Levine.
- 4. Vapor: $P_i = x_{i,v} P$ (Dalton's Law of Partial *P*s)

C. Deviations from Ideality

- 1. Accommodated by activity coefficient "fudge factor."
- 2. Distinguish *positive* and *negative deviations*.
- 3. Extreme \rightarrow *azeotropes*, compound formation, *immiscibility*.

D. Experiment

- 1. Use refractive index to determine mixture compositions.
- Prepare calibration curve by measuring RI for several (8-10) prepared samples. (Start with 6 and expand.)
- 3. Starting with mixture on vacuum line, establish ℓ -*v* equilibrium, measuring *P* and capturing ~2 L of vapor in storage bulb.
- 4. Transfer vapor to sample cell by freezing out with liq N_2 .
- 5. Measure RI for *both* samples -- but allow to warm to room *T* first. (The composition of the ℓ sample changes with vaporization.)
- 6. Try to get results for 6 mixtures, plus both pure components $(P^* \text{ only})$; but 4 mixtures will suffice if pressed for time.
- 7. In the estimation of γ_A and γ_B , data noise tends to be amplified; follow the fitting procedures and use your smooth fitted curves for this determination.

Today's Practice Quiz

- If 1.0 gal of gasoline powers a car for 35 miles, then driving under the same conditions, 5.0 gal should power the same car for

 a. 7 miles
 b. 35 miles
 c. 175 miles
 d. 350 miles
 e. none of these
- 2. Suppose that 1.0 gal of gasoline powers a car for 30 miles. A second fuel has a combustion energy content 50% greater than that of gasoline. How much of this second fuel would be needed to power the car for 180 miles, driving under the same conditions:
 - a. 1.0 gal (b.) 4.0 gal c. 6.0 gal d. 9.0 gal e. none of these
- 3. Still comparing these two fuels, if 1.00 g of gasoline raises the temperature of 1.00 kg of water by 2.00 K, by how much would 0.80 g of the second fuel raise the temperature of 2.00 kg of water?
 - a. 0.50 K (b.) 1.20 K c. 2.40 K d. 3.00 K e. none of these
- 4. Calculate Δn_g for the combustion of 1.00 mol of *n*-propanol (C₃H₇OH) at 25°C to produce CO₂(g) and H₂O(ℓ).

a. 0.0 mol b. 1.0 mol c. 1.5 mol d. 2.5 mol e, none of these

5. The heat exchanged with the surroundings in a process carried out at constant pressure is

a. w (b) ΔH c. ΔE d. $C_P \Delta T$ e. none of these