Freezing-Point Depression

A. Simple Picture for Strong Electrolytes

1. Colligative Property: depends only on amount of solute, not its nature. Does depend on solvent.
2. Equation: $\quad \square T_{f}=-k_{f} m_{\mathrm{B}} \square \quad\left[m_{\mathrm{B}}\right.$ is solute molality, $k_{f}=$ $1.860 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$ for water; $\square=$?]
3. Example: $\mathrm{CaCl}_{2}(s) \square \mathrm{Ca}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q) \quad \square=3$ valid because CaCl_{2} is strong electrolyte, fully ionized in solution.
B. Exact Treatment

$$
\ln a_{\mathrm{A}}=\frac{\square H_{\mathrm{m}, \mathrm{fus}}}{R} \frac{\square T_{f}}{T_{f}^{*} T_{f}} \square \frac{\square H_{\mathrm{m}, \mathrm{fus}} \square T_{f}}{R T_{f^{* 2}}}
$$

$a_{\mathrm{A}}=$ activity; all quantities refer to solvent properties.

1. $a_{\mathrm{A}}=C_{\mathrm{A}} x_{\mathrm{A}} \quad$ (activity coef. \square mole fraction)
2. $x_{\mathrm{A}}=n_{\mathrm{A}} /\left(n_{\mathrm{A}}+\square n_{\mathrm{B}}\right) \quad$ (defines solvent mole fraction)
3. a_{A} and Z_{A} describe deviation of actual system from predictions of simple equation (for which $\square_{h}=1$). Thus, measurement of $\square T_{f}$ permits calculation of Z_{h}.
C. Alternative (but Equivallent) Approach

$$
\square=\frac{-\ln a_{\mathrm{A}}}{M_{\mathrm{A}} \square m_{\mathrm{B}}}
$$ is molar mass of solvent $\mathrm{A}(\mathrm{kg} / \mathrm{mol})$.

$\square T_{f}=-k_{f}(\square \square) m_{\mathrm{B}} \quad$ exact version of 1st equation; \square plays role of fudge factor needed to achieve agreement. Product $\| \square$ known as van't Hoff i factor. Also, have $k_{f}=\frac{R T_{f}^{* 2} M_{\mathrm{A}}}{\square H_{\mathrm{m}, \text { fus }}}$
D. Experiment. For HCl , measure $\square T_{f}$ with thermistor, m_{B} by titration; calculate $\square, a_{\mathrm{A}}, x_{\mathrm{A}}$, and \square_{A}.

E. Weak Electrolytes

1. Example: $\mathrm{HA}(a q) \square \mathrm{H}+(a q)+\mathrm{A}-(a q)$ (weak acid)
2. Let $m=$ starting molality of HA and $\square=$ fractional ionization. Then at equilibrium $m_{\mathrm{HA}}=m(1-\square)$, and

$$
m(1-\square)+m \square+m \square=m(1+\square) \equiv m \square
$$

$$
K_{m}=\frac{m \square^{2}}{(1-\square)}=\frac{(m \boxminus m)^{2}}{2 m-m \square}
$$

3. Approach: Get $m \square$ from $\square T_{f}$ using simple eqn., m from titration. Calculate K_{m}. Extrapolate to zero ionic strength to get "true" K,

$$
\ln K_{m}=\ln K_{a}{ }^{\circ}-2 \ln \square_{ \pm}
$$

$$
\ln K_{m}=\ln K_{a}{ }^{\circ}+2.26(\square m)^{1 / 2}
$$

F. Mustering the Data

平	3 \#	4 T -t'ste	5 t-corc	6 m-samp	7 v -tit	8 nB	$9 \mathrm{mass}-\mathrm{B}$	10 mass-A
0	1	-0.83500	-0.82813	9.873	28.73	0.0022679	0.082692	0.0097903
1	2	-0.68300	-0.67443	10.010	23.97	0.0018922	0.068991	0.0099410
2	3	-0.51200	-0.50153	9.986	17.92	0.0014146	0.051578	0.0099344
3	4	-0.35000	-0.33772	9.989	12.20	0.00096307	0.035114	0.0099539
4	5	-0.24000	-0.22650	10.010	8.22	0.00064889	0.023659	0.0099863
5	6	-0.16400	-0.14965	10.009	5.57	0.00043970	0.016032	0.0099930
6	7	-0.12400	-0.10920	9.972	4.03	0.00031813	0.011599	0.0099604
7		-0.016000	$-1.2215 e-06$					

	$11 \mathrm{n}-\mathrm{H} 20$	12 mHCl	13 phi	14 InaA	15 dA	16×1	17 gA	18 mB ^. 5	L
0	0.54345	0.23165	0.96099	-0.0080208	0.99201	0.99172	1.00029	0.48130	
1	0.55182	0.19034	0.95249	-0.0065322	0.99349	0.99319	1.00630	0.43628	
2	0.55145	0.14239	0.94680	-0.0048575	0.99515	0.99490	1.00026	0.37735	
3	0.55253	0.096753	0.93832	-0.0032710	0.99673	0.99653	1.00021	0.31105	
4	0.55433	0.064977	0.93704	-0.0021937	0.99781	0.99766	1.00014	0.25491	
5	0.55470	0.044001	0.91427	-0.0014494	0.99855	0.99842	1.00013	0.20976	
6	0.55289	0.031939	0.91912	-0.0010577	0.99894	0.99885	1.00009	0.17872	
7									

Thermal Expansivity

A. Underpinning Purposes

1. Experience in using a known substance to calibrate a device, for subsequent application to an unknown substance.
2. Acquaintance with two simple devices - the pycnometer and the dilatometer - capable of giving very precise results for a fundamental physical property of liquid substances.
B. Theory

3. Integration $\square V=V r \exp \left[\square\left(T-T_{r}\right)\right]$ where \square is assumed to be independent of T near some reference $T=T_{r}$.
4. More general: If $f\left(T, T_{r}\right)$ is a function that $=0$ when $T=T_{r}$, where $V=V_{r}$, then if V is expressed $V=V r \exp [f(T, T r)]$

$$
\square=\mathrm{d} f / \mathrm{d} T
$$

C. Experiment

1. Known is "standard mean ocean water." Its density is a function of T, so calibration requires measuring m and T.
2. Both this and the unknown (an alcohol) must be degassed beforehand to prevent air bubble formation.
3. Thermal equilibrium is not achieved instantly!
4. Data obtained in range $10-40^{\circ} \mathrm{C}$; suffices to determine whether \square is T-dependent over this range.
5. Etched scales on both devices are in cm and mm .
6. Minor complications:

Buoyancy correction in pycnometry masses. Thermal expansivity of Pyrex not negligible.
7. Modified instructions:
(1) Do dilatometry for just three T ranges: $\sim 15,25,35^{\circ} \mathrm{C}$
(2) Get density (pycnometry) for at least $4 T \mathrm{~s}$ in this range.

Today's Practice Quiz

1. Our treatment of the $\mathrm{I}_{2}+\mathrm{M} \square \mathrm{I}_{2} \mathrm{M}$ reaction yielded a straight-line relationship permitting us to extract K and \square_{k} from an appropriate plot of " y " vs. " x." If this expression is written as $y=a+b x$, the equilibrium constant K is given by
a. a / b
b. b / a
c. $a \square b$
d. $1 / a$
e. none of these
2. For the following reaction, $K=8.6 \square 10^{19}$ at $25^{\circ} \mathrm{C}$ and $K=1.09 \square 10^{15}$ at $125^{\circ} \mathrm{C}$:

$$
\mathrm{Cl}_{2}(g)+\mathrm{F}_{2}(g) \square \quad 2 \mathrm{ClF}(g)
$$

Assuming that $\square H^{\circ}$ and $\square S^{\circ}$ are independent of T over this range, calculate $\square S^{\circ}$.
a. $3.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
b. $8.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
c. $11.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
d. $-111.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ e. $-113.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
3. The reaction $\mathrm{A}+\mathrm{B} \square \mathrm{C}$ is studied experimentally by mixing together solutions of A and B and determining concentrations at equilibrium. 10.0 mL of 0.036 m A is mixed with 5.0 mL of 0.126 m B , and at equilibrium [C] is found to be 0.0094 m . What is the value of K for this reaction?
a. $2.1 \mathrm{~L} \mathrm{~mol}^{-1}$
b. $3.0 \mathrm{~L} \mathrm{~mol}^{-1}$
c. $9.3 \mathrm{~L} \mathrm{~mol}^{-1}$
d. $19.7 \mathrm{~L} \mathrm{~mol}^{-1}$
e. none of these

