Freezing-Point Depression

A. Simple Picture for Strong Electrolytes

- 1. *Colligative Property*: depends only on *amount* of solute, not its nature. Does depend on *solvent*.
- 2. Equation: $\Delta T_f = -k_f m_B v \quad [m_B \text{ is solute molality}, k_f = 1.860 \text{ K kg/mol for water}; v = ?]$
- 3. Example: $\operatorname{CaCl}_2(s) \to \operatorname{Ca}^{2+}(aq) + 2\operatorname{Cl}^-(aq) \qquad v = 3$

valid because $CaCl_2$ is strong electrolyte, fully ionized in solution.

B. Exact Treatment

$$\ln a_{\rm A} = \frac{\Delta H_{\rm m, fus}}{R} \frac{\Delta T_f}{T_f^*! T_f} \approx \frac{\Delta H_{\rm m, fus!} \Delta T_f}{R! T_f^* 2!}$$

 $a_A = activity$; all quantities refer to solvent properties.

- (activity coef. \times mole fraction) 1. $a_A = \gamma_A x_A$
- 2. $x_{\rm A} = n_{\rm A}/(n_{\rm A} + v n_{\rm B})$ (defines solvent mole fraction)
- 3. a_A and γ_A describe deviation of actual system from predictions of simple equation (for which $\gamma_A = 1$). Thus, measurement of ΔT_f permits calculation of γ_A .
- C. Alternative (but Equivalent) Approach

 $\phi = \frac{-\ln |a_A|}{M_{A!} v_! m_B}$ defines *practical osmotic coefficient* ϕ . M_A is molar mass of solvent A (kg/mol).

 $\Delta T_f = -k_f(v \phi) m_B$ exact version of 1st equation; ϕ plays role of fudge factor needed to achieve agreement. Product $v\phi$ known as van't Hoff i factor. Also, have $k_f = \frac{R!T_f^{*2}!M_A}{\Lambda H_{\rm m \, fus}}$

D. Experiment. For HCl, measure ΔT_f with thermistor, m_B by titration; calculate ϕ , a_A , x_A , and γ_A .

E. Weak Electrolytes

- 1. *Example*: $HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$ (weak acid)
- 2. Let m = starting molality of HA and α = fractional ionization. Then at equilibrium $m_{\text{HA}} = m (1 - \alpha)$, and

 $m(1-\alpha) + m\alpha + m\alpha = m(1+\alpha) \equiv m'$

$$K_m = \frac{m \cdot \alpha^2}{(1 - \alpha)!} = \frac{(m' - m)^2}{2m - m'}$$

3. Approach: Get m' from ΔT_f using simple eqn., m from titration. Calculate K_m . Extrapolate to zero ionic strength to get "true" K,

 $\ln K_m = \ln K_a^\circ - 2 \ln \gamma_{\pm}$

 $\ln K_m = \ln K_a^{\circ} + 2.26 (\alpha m)^{1/2}$

F. Mustering the Data

	3 #	4 T-t'st	5 t-cone:	6 m-samp	7 v-tit	8 nB	9 mass-B	10 mass-A
0	1	-0.83500	-0.82813	9.873	28.73	0.0022679	0.082692	0.0097903
1	2	-0.68300	-0.67443	10.010	23.97	0.0018922	0.068991	0.0099410
2	3	-0.51200	-0.50153	9.986	17.92	0.0014146	0.051578	0.0099344
3	4	-0.35000	-0.33772	9.989	12.20	0.00096307	0.035114	0.0099539
4	5	-0.24000	-0.22650	10.010	8.22	0.00064889	0.023659	0.0099863
5	6	-0.16400	-0.14965	10.009	5.57	0.00043970	0.016032	0.0099930
6	7	-0.12400	-0.10920	9.972	4.03	0.00031813	0.011599	0.0099604
7		-0.016000	-1.2215e-06					
0								

	11 n-H20	12 mHCl	13 phi	14 LnaA	15 aA	16 ×A	17 gA	18 mB^.5
0	0.54345	0.23165	0.96099	-0.0080208	0.99201	0.99172	1.00029	0.48130
1	0.55182	0.19034	0.95249	-0.0065322	0.99349	0.99319	1.00030	0.43628
2	0.55145	0.14239	0.94680	-0.0048575	0.99515	0.99490	1.00026	0.37735
З	0.55253	0.096753	0.93832	-0.0032710	0.99673	0.99653	1.00021	0.31105
4	0.55433	0.064977	0.93704	-0.0021937	0.99781	0.99766	1.00014	0.25491
5	0.55470	0.044001	0.91427	-0.0014494	0.99855	0.99842	1.00013	0.20976
6	0.55289	0.031939	0.91912	-0.0010577	0.99894	0.99885	1.00009	0.17872
7								

Thermal Expansivity

A. Underpinning Purposes

- 1. Experience in using a *known* substance to calibrate a device, for subsequent application to an *unknown* substance.
- 2. Acquaintance with two simple devices the *pycnometer* and the *dilatometer* capable of giving very precise results for a fundamental physical property of liquid substances.
- **B.** Theory

1.
$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = \left(\frac{\partial \ln V}{\partial T} \right)_P$$
 and, since $\rho = m/V$, $\alpha = -\left(\frac{\partial \ln \rho}{\partial T} \right)_P$

- 2. Integration $\Rightarrow V = V_r \exp[\alpha(T T_r)]$ where α is assumed to be independent of *T* near some reference $T = T_r$.
- 3. More general: If $f(T,T_r)$ is a function that = 0 when $T = T_r$, where $V = V_r$, then if V is expressed $V = Vr \exp[f(T,T_r)]$

 $\alpha = df/dT$

C. Experiment

- 1. Known is "standard mean ocean water." Its density is a function of T, so calibration requires measuring m and T.
- 2. Both this and the unknown (an alcohol) must be degassed beforehand to prevent air bubble formation.
- 3. Thermal equilibrium is *not* achieved instantly!
- 4. Data obtained in range 10-40°C; suffices to determine whether α is *T*-dependent over this range.
- 5. Etched scales on both devices are in cm and mm.
- 6. Minor complications:Buoyancy correction in pycnometry masses.Thermal expansivity of Pyrex not negligible.
- 7. Modified instructions:
 - (1) Do dilatometry for just three *T* ranges: $\sim 15, 25, 35^{\circ}$ C
 - (2) Get density (pycnometry) for at least 4 Ts in this range.

Today's Practice Quiz

- 1. Our treatment of the $I_2 + M \iff I_2M$ reaction yielded a straight-line relationship permitting us to extract *K* and ε_x from an appropriate plot of "y" vs. "x." If this expression is written as y = a + bx, the equilibrium constant *K* is given by a. a/b b. b/a c. $a \times b$ d. 1/a e. none of these
- 2. For the following reaction, $K = 8.6 \times 10^{19}$ at 25°C and $K = 1.09 \times 10^{15}$ at 125°C: $Cl_2(g) + F_2(g) \iff 2ClF(g)$

Assuming that ΔH° and ΔS° are independent of *T* over this range, calculate ΔS° .

- a. $3.7 \text{ J K}^{-1} \text{ mol}^{-1}$ b. $8.5 \text{ J K}^{-1} \text{ mol}^{-1}$ c. $11.3 \text{ J K}^{-1} \text{ mol}^{-1}$ d. $-111.2 \text{ J K}^{-1} \text{ mol}^{-1}$ e. $-113.7 \text{ J K}^{-1} \text{ mol}^{-1}$
- 3. The reaction A + B ↔ C is studied experimentally by mixing together solutions of A and B and determining concentrations at equilibrium. 10.0 mL of 0.036 m A is mixed with 5.0 mL of 0.126 m B, and at equilibrium [C] is found to be 0.0094 m. What is the value of K for this reaction?

a. 2.1 L mol ⁻¹	b. 3.0 L mol ⁻¹	c. 9.3 L mol ⁻¹
(d.) 19.7 L mol ⁻¹	e. none of these	