The Triple Point

A. Thermodynamics

1. Phase Equilibria: $\mathrm{X}(\ell) \square \quad \mathrm{X}(g)$ and $\mathrm{X}(s) \square \mathrm{X}(g)$ (vaporization and sublimation)
2. Clapeyron Eqn: $\mathrm{d} P / \mathrm{d} T=\square S / \square V$ Since these are equilibrium processes at fixed T, $\square S=\square H / T$, where $\square H=\square H_{\text {vap }}$ or $\square H_{\text {sub }}$.
3. Clausius-Clapeyron: When one phase is g and P is not high,

$$
\begin{array}{ll}
\square V \square V_{\text {gas }} \square n R T / P \text {, giving } & \frac{\mathrm{d} \ln P}{\mathrm{~d} T}=\frac{\square H_{\mathrm{m}}}{R T^{2}} \\
\text { or, using } \mathrm{d}(1 / T)=-\mathrm{d} T / T^{2}, & \frac{\mathrm{~d} \ln P}{\mathrm{~d}(1 / T)}=\square \frac{\square H_{\mathrm{m}}}{R}
\end{array}
$$

4. Integration: $\quad \ln P=$ const $-\square H_{\mathrm{m}} / R T\left(\square H_{\mathrm{m}}\right.$ assumed const.) Substituting P_{0} at T_{0} (any reference point),

$$
\ln \frac{P}{P_{0}}=\frac{\square H_{\mathrm{m}}}{R} \frac{1}{T_{0}} \square \frac{1}{T}[
$$

B. Experiment

1. "Freeze-dry" sample; then record P and T on warmup.
2. Edit data to remove non-equilibrium pts (if necessary).
3. Plot $\ln P$ vs. $1 / T$, for sublimation and vaporization regions.
4. Fit to obtain $\square H_{\text {sub }}$ and $\square H_{\text {vap }}$. and their uncertainties.
5. Calculate $\square H_{\text {fus }}=\square H_{\text {sub }}-\square H_{\text {vap }}$ and its uncertainty.

C. Illustration

Today's Practice Quiz

In KG Exer. 4 you used the random number generator to produce 10^{4} random numbers in the range $0-1$, then repeated for averages of 2 and 12 , producing histograms and calculating statistics for all results.

- What was the appearance of each histogram?

Roughly 1000 counts in each of 10 bins in 1st case, scatter $\sim 1000^{1 / 2}$
Roughly triangular distribution for average of 2.
Roughly normal distribution for average of 12 .
2. How would the histograms differ if you had generated 10^{6} total counts?

Same shapes but smoother: Scatter is larger by factor $100^{1 / 2}$ but bin counts increase by factor 100, so relative scatter reduced by factor 10 .
3. How do the means, variances, and standard deviations change for these three cases?
Means all ~ 0.5. Variance for mean of 2 is smaller than that for single samples by factor 2 ; variance for mean of 12 is smaller by factor 12 . $\square \mathrm{s}$ smaller by factors $2^{1 / 2}$ and $12^{1 / 2}$, respectively.
4. How would these results change if you generated 10^{6} total counts?

No change, just closer to theoretical expectations, thanks to the 100 -fold increase in samples.
5. Jones measures $x 16$ times and obtains $\square x \square=35$ and $s_{x}^{2}=1$. If she now makes one more measurement, the probability that she observes a value larger than 36 or smaller than 34 is about
a. 0.50
b. 0.68
c. 0.32
d. 0.95
e. 0.05
f. >0.99
g. <0.01
6. Now Jones repeats the entire experiment (16 measurements). The probability that she obtains a new average value >36 or <34 is about
a. 0.50
b. 0.68
c. 0.32
d. 0.95
e. 0.05
f. >0.99
g. <0.01
7. Smith does the same experiment, using the same equipment and procedures, but makes 100 measurements. Estimate his standard deviation in the mean and compare it with Jones's value.

$$
\text { Smith: } s_{x} / N^{1 / 2}=1 / 10 \quad \text { Jones: } 1 / 4
$$

