Bomb Calorimetry

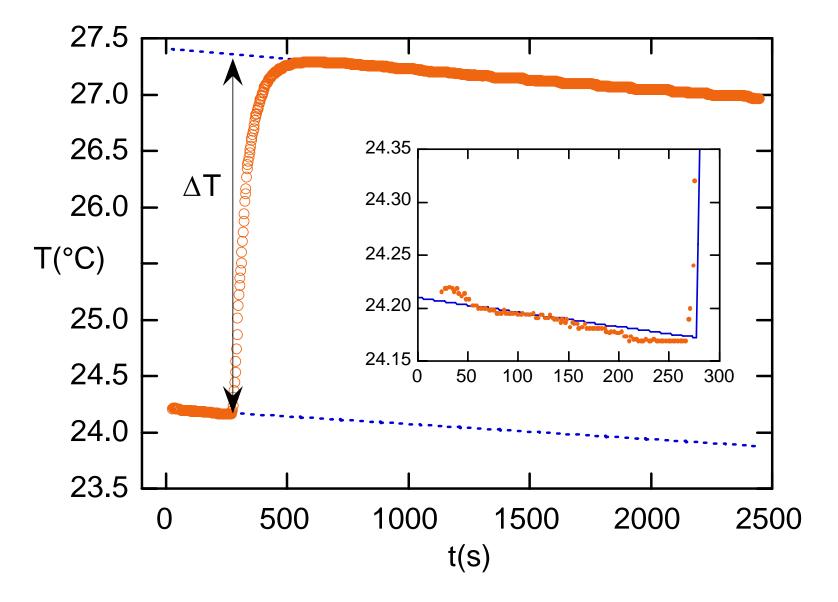
A. Thermodynamics

- 1. *First Law*: $\Delta E = q + w$ (*E* = internal energy; *q* & *w* are heat added to and work done on system)
- 2. *PV work*: $w_{PV} = -\int PdV$ Thus, if w_{PV} is the only work, w = 0 when V is constant, yielding
- 3. $\Delta E = q \ (= q_V)$, process at constant *V*, *PV* work only.
- 4. *Enthalpy* <u>defined</u>: $H \equiv E + PV$. With this definition,

 $\Delta H = q \ (= q_P)$ for process at constant *P*.

B. Chemical Reaction

1. $\Delta E_{\text{rx}} = \sum v_i E_i$ $v_i = stoichiometry number (+ for products, - for reactants)$


2. $\Delta H_{rx} = \sum v_i H_i = \sum v_i \Delta H_{f,i}$ (formation enthalpy)

3. *Standard States*: ° designates substances in standard state, which includes $P = P^\circ = 1$ bar (≈ 750 Torr). (see CP)

4.
$$\Delta H^{\circ} = \sum v_i \Delta H^{\circ}_{f,i} = \Delta E^{\circ} + \Delta (PV)^{\circ} = \Delta E^{\circ} + P^{\circ} \Delta V^{\circ}$$

- 5. For *gases*: $\Delta H^{\circ} = \Delta E^{\circ} + \Delta v_g RT$ ($\Delta v_g = \text{mol gaseous}$ products mol gaseous reactants; ΔV° negligible for solids and liquids.)
- **C. Bomb Calorimetry**
 - 1. V is constant \implies measure $q_V = \Delta E$.
 - 2. Determine by precisely measuring *T* change.
 - 3. *Calibration*: Measure ΔT for known standard (benzoic acid) and determine *calorimeter constant*, $C_{\rm K} = q/\Delta T$.
 - 4. *Sample* heat: $q_s = C_K \Delta T_s$ (from combusion of sample)

D. Estimation of ΔT

Today's Practice Quiz

1. A solution is prepared by dissolving 13.71 g of smactose in water and bringing the volume to 0.100 L in a volumetric flask. The optical rotation observed at λ_D for this solution in a 0.500-m polarimetry cell is -34.7°. Calculate the specific rotation of smactose (units deg mL g⁻¹ dm⁻¹) at this wavelength and *T*.

a. -0.95 b. -23.8 c. -50.6 d. -126.5 e. none of these

- 2. 70.0 mL of 3.0 m Na₂SO₄ is mixed with 30.0 mL of 1.0 m NaCl. Assuming the volumes are additive, the resulting concentration of sodium ion is:
 a. 2.0 m
 b. 2.4 m
 c. 4.0 m
 d. 4.5 m
 e. none of these
- 3. The reaction, $2A + 2B \rightarrow C + D$, has a rate constant of $6.0 \times 10^{-3} L^2 \text{ mol}^{-2} \text{ s}^{-1}$ at 0°C. The order of this reaction is

a. 1 b. 2 c. 3 d. indeterminate without additional information. e. none of these

- 4. For a certain reaction, a plot of ln [A] versus *t* gives a straight line with a slope of -1.46 s^{-1} and a *y*-intercept of 4.30. The rate constant is a. 0.68 s b. -1.46 s^{-1} c. 1.46 s^{-1} d. 4.30 s^{-1}
 - e. This cannot be determined without additional information.

- 5. An acid-calalyzed reaction has a rate constant of 0.0434 L mol⁻¹ min⁻¹. A reaction is initiated by mixing HCl with the other reactant to give an acid molarity of 1.3. What is the half-life of the reaction?
 a. 0.056 min
 b. 12.3 min
 c. 17.7 min
 d. Need additional information.
- 6. As a good rule of thumb, many reactions double in speed for a 10° C increase in *T* at room temperature. Taking the two temperatures to be 20° C and 30° C, the activation energy for such reactions would be

a. 0.35 kJ mol^{-1}	b. 6.2 kJ mol ⁻¹	c. 22 kJ mol^{-1}
d. 51 kJ mol ^{-1}	e. 148 kJ mol ⁻¹	

7. In a reaction the reactant A is observed to drop to $\frac{1}{2}$ its starting concentration after 10.0 min. How much longer will it take to drop to $\frac{1}{4}$ [A]₀?

a. 5.0 minb. 10.0 minc. 20.0 mind. Need additional information.e. none of these