Bomb Calorimetry

A. Thermodynamics

1. First Law: $\Delta E=q+w$ ($E=$ internal energy; $q \& w$ are heat added to and work done on system)
2. $P V$ work: $w_{P V}=-\int P d V$ Thus, if $w_{P V}$ is the only work, $w=$ 0 when V is constant, yielding
3. $\Delta E=q\left(=q_{V}\right)$, process at constant $V, P V$ work only.
4. Enthalpy defined: $H \equiv E+P V$. With this definition, $\Delta H=q\left(=q_{P}\right)$ for process at constant P.
B. Chemical Reaction
5. $\Delta E_{\mathrm{rx}}=\sum v_{i} E_{i} \quad v_{i}=$ stoichiometry number (+ for products, - for reactants)
6. $\Delta H_{\mathrm{rx}}=\sum v_{i} H_{i}=\sum v_{i} \Delta H_{f, i} \quad$ (formation enthalpy)
7. Standard States: ${ }^{\circ}$ designates substances in standard state, which includes $P=P^{\circ}=1$ bar (≈ 750 Torr). (see CP)
8. $\Delta H^{\circ}=\sum v_{i} \Delta H_{f, i}^{\circ}=\Delta E^{\circ}+\Delta(P V)^{\circ}=\Delta E^{\circ}+P^{\circ} \Delta V^{\circ}$
9. For gases: $\Delta H^{\circ}=\Delta E^{\circ}+\Delta v_{g} R T \quad\left(\Delta v_{g}=\right.$ mol gaseous products - mol gaseous reactants; ΔV° negligible for solids and liquids.)

C. Bomb Calorimetry

1. V is constant \Rightarrow measure $q_{V}=\Delta E$.
2. Determine by precisely measuring T change.
3. Calibration: Measure ΔT for known standard (benzoic acid) and determine calorimeter constant, $C_{K}=q / \Delta T$.
4. Sample heat: $q_{s}=C_{K} \Delta T_{s} \quad$ (from combusion of sample)

D. Estimation of ΔT

Today's Practice Quiz

1. A solution is prepared by dissolving 13.71 g of smactose in water and bringing the volume to 0.100 L in a volumetric flask. The optical rotation observed at λ_{D} for this solution in a $0.500-\mathrm{m}$ polarimetry cell is -34.7°. Calculate the specific rotation of smactose (units deg $\mathrm{mL} \mathrm{g}^{-1} \mathrm{dm}^{-1}$) at this wavelength and T.
a. -0.95
b. -23.8
c. -50.6
d. -126.5
e. none of these
2. 70.0 mL of $3.0 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}$ is mixed with 30.0 mL of 1.0 m NaCl . Assuming the volumes are additive, the resulting concentration of sodium ion is:
a. 2.0 m
b. 2.4 m
c. 4.0 m
d. 4.5 m
e. none of these
3. The reaction, $2 \mathrm{~A}+2 \mathrm{~B} \rightarrow \mathrm{C}+\mathrm{D}$, has a rate constant of $6.0 \times 10^{-3} \mathrm{~L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$ at $0^{\circ} \mathrm{C}$. The order of this reaction is
a. 1
b. 2
c. 3
d. indeterminate without additional information.
e. none of these
4. For a certain reaction, a plot of $\ln [A]$ versus t gives a straight line with a slope of $-1.46 \mathrm{~s}^{-1}$ and a y-intercept of 4.30 . The rate constant is
a. 0.68 s
b. $-1.46 \mathrm{~s}^{-1}$
C. $1.46 \mathrm{~s}^{-1}$
d. $4.30 \mathrm{~s}^{-1}$
e. This cannot be determined without additional information.
5. An acid-calalyzed reaction has a rate constant of $0.0434 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$. A reaction is initiated by mixing HCl with the other reactant to give an acid molarity of 1.3 . What is the half-life of the reaction?
a. 0.056 min
(b.) 12.3 min
c. 17.7 min
d. Need additional information.
e. none of these
6. As a good rule of thumb, many reactions double in speed for a $10^{\circ} \mathrm{C}$ increase in T at room temperature. Taking the two temperatures to be $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$, the activation energy for such reactions would be
a. $0.35 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b. $6.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c. $22 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d. $51 \mathrm{~kJ} \mathrm{~mol}^{-1}$
e. $148 \mathrm{~kJ} \mathrm{~mol}^{-1}$
7. In a reaction the reactant A is observed to drop to $1 / 2$ its starting concentration after 10.0 min. How much longer will it take to drop to $1 / 4[\mathrm{~A}]_{0}$?
a. 5.0 min
b. 10.0 min
c. 20.0 min
d. Need additional information.
e. none of these
