Chemistry 236

Inversion of Sucrose Lab Study Problems -- Answers

2. a. $\alpha_{0}=[\alpha]_{\lambda}^{T}[\text { sucrose }]_{0} l=66.4^{\circ} \mathrm{dm}^{-1} \mathrm{~mL} \mathrm{~g}^{-1} \times 0.100 \mathrm{~g} / \mathrm{mL} \times 2.00 \mathrm{dm}$ $=13.28^{\circ}\left(13.3^{\circ}\right)$.
b. $\quad \alpha_{\infty} \approx 1 / 2$ [sucrose $]_{0} \ell\left\{[\alpha]_{\lambda, \text { gluc }}^{T}+[\alpha]_{\lambda, \text { fruc }}^{T}\right\}=-3.6^{\circ}$. More precisely, 100.00 g sucrose $\rightarrow 52.63 \mathrm{~g}$ glucose +52.63 g fructose, so $\alpha_{\infty}=0.05263 \mathrm{~g} / \mathrm{mL} \times 2.00 \mathrm{dm} \times(52.5-88.5) \mathrm{dm}^{-1} \mathrm{~mL} \mathrm{~g}^{-1}=-3.79^{\circ}\left(-3.8^{\circ}\right)$.
(This still assumes that there is no volume change on reaction, which cannot be exactly true.)
3. $\alpha(t)=\alpha_{\infty}+\left(\alpha_{0}-\alpha_{\infty}\right) \exp \left(-k_{\text {eff }} t\right)$.
half-life: $\quad \exp \left(-k_{\text {eff }} \tau_{1 / 2}\right)=1 / 2 \rightarrow \tau_{1 / 2}=\ln 2 / k_{\text {eff }}$.
inversion: $\alpha\left(t_{\text {inv }}\right)=\alpha_{\infty}+\left(\alpha_{0}-\alpha_{\infty}\right) \exp \left(-k_{\text {eff }} t_{\text {inv }}\right)=0 \rightarrow$
$\exp \left(-k_{\mathrm{eff}} t_{\mathrm{inv}}\right)=3.79 /(13.28+3.79)=0.222 \rightarrow$
$t_{\text {inv }}=1.505 / k_{\text {eff }} \rightarrow t_{\text {inv }} / \tau_{1 / 2}=2.17$.
Thus it takes 2.17 half-lives to reach the inversion point.
4. $k=A \exp \left(-E_{a} / R T\right) \rightarrow k_{1} / k_{2}=\exp \left[E_{a} / R\left(T_{2}^{-1}-T_{1}^{-1}\right)\right] \rightarrow$
$E_{a}=55.1 \mathrm{~kJ} / \mathrm{mol}$.
Let $Y=k_{1} / k_{2}$. Then $\left(\mathrm{s}_{Y} / Y\right)^{2}=\left[\left(s_{k} 1 / k_{1}\right)^{2}+\left(s_{k 2} / k_{2}\right)^{2}\right] \rightarrow \mathrm{s}_{Y} / Y=0.141$.
Let $z=\ln Y$. Then $s_{z}=\mathrm{s}_{Y} / Y=0.141$. Since we take T_{1} and T_{2} as error-free, $s_{E_{a}} / E_{a}=s_{z}| | z \mid=0.133 \rightarrow s_{E_{a}}=7.3 \mathrm{~kJ} / \mathrm{mol} \rightarrow E_{a}=55(7) \mathrm{kJ} / \mathrm{mol}$.
5. $[\mathrm{HCl}]=0.80 \mathrm{~mol} / \mathrm{L} ; \quad[$ sucrose $]=80.0 \mathrm{~g} / \mathrm{L}$
6. sucrose: $\quad 32 \mathrm{~mL}$ stock +8 mL water $\Rightarrow 160 \mathrm{~g} / \mathrm{L}$ sucrose $\Rightarrow 80 \mathrm{~g} / \mathrm{L}$ on mixing. HCl: $\quad 30 \mathrm{~mL} 4.0 \mathrm{M}+10 \mathrm{~mL}$ water $\Rightarrow 3.0 \mathrm{M} \mathrm{HCl} \Rightarrow 1.5 \mathrm{M}$ on mixing.
7. $k_{\text {eff }}=k_{\mathrm{H}}\left[\mathrm{H}^{+}\right]=0.0585 \mathrm{~min}^{-1}$. Let $\ell=$ length of polarimeter tube (dm). Then, from Prob. 2, $\alpha_{0}=5.31^{\circ} \mathrm{l}$ and $\alpha_{\infty}=-1.52^{\circ} l$. Proceeding as in Prob. 3, we solve $0=\alpha_{\infty}+\left(\alpha_{0}-\alpha_{\infty}\right) \exp \left(-k_{\mathrm{eff}} t\right)$ for t and obtain 25.7 min .
8. $w_{i} \propto \sigma_{i}^{-2}$. We fit $\ln [\alpha(t)-B]$. Let $y=\alpha(t)-B$. Since s_{α} is constant, so is s_{y}. From the referenced problem, if $z=\ln y, s_{z}=s_{y} / y$. We fit z, so $w_{i} \propto y_{i}{ }^{2}$.
9. We fooled KG into doing this calculation by doubling the number of points from 2 to 4 . Since the computed standard errors incorporate a factor of $n^{-1 / 2}$, KG has made these a factor of $\sqrt{2}$ too small.
