Chemistry 236 Inversion of Sucrose Lab Study Problems -- Answers

- 2. a. $0 = \begin{bmatrix} \end{bmatrix}^{T} [\text{sucrose}]_{0} \ell = 66.4^{\circ} \text{ dm}^{-1} \text{ mL } \text{g}^{-1} \times 0.100 \text{ g/mL} \times 2.00 \text{ dm} = 13.28^{\circ} (13.3^{\circ}).$
 - b. $\frac{1}{2} [sucrose]_0 \ \ell \left\{ \begin{bmatrix} \\ \end{bmatrix}^T_{,gluc} + \begin{bmatrix} \\ \end{bmatrix}^T_{,fruc} \right\} = -3.6^{\circ}.$ More precisely, 100.00 g sucrose 52.63 g glucose + 52.63 g fructose, so = 0.05263 g/mL × 2.00 dm × (52.5 - 88.5) dm⁻¹ mL g⁻¹ = -3.79° (-3.8°). (This still assumes that there is no volume change on reaction, which cannot be exactly true.)
- 3. $(t) = + (0) \exp(-k_{\text{eff}} t)$. half-life: $\exp(-k_{\text{eff}} 1/2) = \frac{1}{2} 1/2 = \frac{\ln 2}{k_{\text{eff}}}$. inversion: $(t_{\text{inv}}) = + (0 -) \exp(-k_{\text{eff}} t_{\text{inv}}) = 0$ $\exp(-k_{\text{eff}} t_{\text{inv}}) = \frac{3.79}{(13.28+3.79)} = 0.222$ $t_{\text{inv}} = \frac{1.505}{k_{\text{eff}}} t_{\text{inv}}/\frac{1}{2} = 2.17$.

Thus it takes 2.17 half-lives to reach the inversion point.

- 4. $k = A \exp(-E_a/RT)$ $k_1/k_2 = \exp[E_a/R (T_2^{-1} T_1^{-1})]$ $E_a = 55.1 \text{ kJ/mol.}$ Let $Y = k_1/k_2$. Then $(s_Y/Y)^2 = [(s_{k1}/k_1)^2 + (s_{k2}/k_2)^2]$ $s_Y/Y = 0.141$. Let $z = \ln Y$. Then $s_z = s_Y/Y = 0.141$. Since we take T_1 and T_2 as error-free, $s_{E_a}/E_a = s_z/|z| = 0.133$ $s_{E_a} = 7.3 \text{ kJ/mol}$ $E_a = 55(7) \text{ kJ/mol.}$
- 5. [HC1] = 0.80 mol/L; [sucrose] = 80.0 g/L
- 6. <u>sucrose</u>: 32 mL stock + 8 mL water 160 g/L sucrose 80 g/L on mixing. <u>HCl</u>: 30 mL 4.0 M + 10 mL water 3.0 M HCl 1.5 M on mixing.
- 7. $k_{\text{eff}} = k_{\text{H}} [\text{H}^+] = 0.0585 \text{ min}^{-1}$. Let $\ell = \text{length of polarimeter tube (dm)}$. Then, from Prob. 2, $0 = 5.31^\circ \ell$ and $= -1.52^\circ \ell$. Proceeding as in Prob. 3, we solve $0 = +(0 \ell) \exp(-k_{\text{eff}} t)$ for t and obtain 25.7 min.
- 8. $w_i = i^{-2}$. We fit $\ln[(t) B]$. Let y = (t) B. Since *s* is constant, so is s_y . From the referenced problem, if $z = \ln y$, $s_z = s_y/y$. We fit *z*, so $w_i = y_i^2$.
- 9. We fooled KG into doing this calculation by doubling the number of points from 2 to 4. Since the computed standard errors incorporate a factor of $n^{-1/2}$, KG has made these a factor of $\sqrt{2}$ too small.