Chemistry 236
Gas-Phase Kinetics Lab Study Problems -- Answers
2. $P(0)=P_{0}=a+b ; P(\infty)=3 P_{0}=b \Rightarrow a=-2 P_{0}$.
$\Rightarrow P(t)=P_{0}\left(3-2 \mathrm{e}^{-k t}\right)$.
3. The heating that is needed to prevent condensation of liquid in the manometer and connecting tubing also produces an expansion of the Hg . The magnitude of the effect is about $1-1.5 \mathrm{~mm}$. Thus the apparent P is ~-1 torr when the actual P is 0.0 . Assuming the Hg in the right arm remains at room T (this appears to be roughly true), the correction should be proportional to the length of Hg in the left arm (i.e., it should be +1.0 torr, say, at the reading that corresponds to $P=$ 0 , and it should be 0 when the Hg is near the bottom in the left tube).
4. $P(t)=a \mathrm{e}^{-k t}+b+c t$.
5. See Eqs. (27) on p. 286 of SGN. Note that for the half-life, $\exp \left(-k t_{1 / 2}\right)=1 / 2$ $\rightarrow t_{1 / 2}=\ln 2 / k$, while the "third-life" is defined as the point where the reaction is $1 / 3$ completed, or $\exp \left(-k t_{1 / 3}\right)=2 / 3$.
6. $k=A \exp \left(-E_{a} / R T\right) \rightarrow k_{1} / k_{2}=\exp \left[E_{a} / R\left(T_{2}^{-1}-T_{1}^{-1}\right)\right] \rightarrow$ $k_{1} / k_{2}=3.00 \Rightarrow E_{a}=113 \mathrm{~kJ} / \mathrm{mol}$.

