Chemistry 236 Thermal Expansivity Lab Study Problems -- Answers

1.
$$| = |_r \exp[\alpha|(T - T_r)] \approx |_r (1 + \alpha | \Delta T)$$
 (for small ΔT).
 $V = |_3 = |_r \sin \left[\frac{3\alpha}{(T - T_r)} \right] \approx |_r \sin \left[\frac{3\alpha}{\Delta T} \right]$
 $(1 + \alpha | \Delta T)^3 = 1 + 3\alpha | \Delta T + 3\alpha |^2 \Delta T^2 + \alpha |^3 \Delta T^3 \approx 1 + 3\alpha | \Delta T$.

- 2. V of the water = 50.000 mL @ 20.0° C = 49.91035 g \rightarrow 50.30165 mL @ 40.0° C.
 - (a) $V_{\text{cap}} = 0.30165 \text{ mL} @ 40.0^{\circ}\text{C}$ neglecting bulb expansion.

(b) $V_{\text{bulb}} = 50.00975 \text{ mL} @ 40.0^{\circ}\text{C} \rightarrow V_{\text{cap}} = 0.2919 \text{ mL}.$

Answer (a) is higher by 0.00975 mL, or 3.34%; the capillary length for 0.00975 mL is 15.3 mm, which is easily measured. Hence this error is significant.

- 3. The relative change is $V_{25}/V_{40} = \rho_{40}/\rho_{25} = 0.99510$. The error is thus -0.49%. Since the assumption that the whole capillary is at 25°C is an extreme one, this problem may not be significant in typical situations. Still, the <u>maximum</u> error would be a measurable 0.7 mm on the capillary.
- 4. Since T = t + 273.15, dV/dT = dV/dt. Thus $\alpha = (a_1 + 2a_2t + 3a_3t^2 + 4a_4t^3 + 5a_5t^4)/V(t)$. At 32.5°C V = 1.00516 g/mL and $\alpha = 3.248 \times 10^{-4}$ K⁻¹.
- 5. (a) $50.127 \text{ g H}_2\text{O}$ (b) V = 50.2171 mL(c) 37.788 g alcohol (d) $\rho_{alc} = 0.75249 \text{ g/mL}$. air buoyancy = 0.062 g(a') 50.065 g (b') 50.1550 mL(c') 37.726 g alc. (d') $\rho_{alc} = 0.75219 \text{ g/mL}$ (0.040% error)

The error vanishes if the density of the unknown is the same as that of water.

- 6. For an ideal gas, PV = nRT, and $\alpha = 1/T$.
- 7. (a) $x = t 50^{\circ}\text{C} = T 323.15 \text{ K}$, so $d\rho/dT = d\rho/dx$, so $\alpha = -(b + 2cx + 3dx^2)$.
 - (b) $\rho(30^{\circ}\text{C}) = 0.78062 \text{ g/cm}^3; \alpha(30^{\circ}\text{C}) = 0.001106 \text{ K}^{-1}.$
 - (c) No.
- 8. All but mass.