

Pledge and signature:

Note: If you want your paper returned folded (*i.e.*, score concealed), please print your name on the back.

1. (2) Combustion of 1.00 g of substance A raises the temperature of 1.000 kg of water by 2.00 K. Therefore combustion of 2.00 g of A will raise the temperature of 2.000 kg of water by
 - 0.50 K
 - 1.00 K
 - 2.00 K
 - 4.00 K
 - none of these
2. (2) Combustion of 1.00 g of substance A raises the temperature of 1.000 kg of water by 2.00 K. Suppose the water is replaced by 1.000 kg of a liquid having exactly half the specific heat capacity of water and the experiment is repeated (again, combustion of 1.00 g of A). The observed T will be
 - 0.50 K
 - 1.00 K
 - 2.00 K
 - 4.00 K
 - none of these
3. (2) Substance A has specific heat of combustion $q_{\text{spec},A}$, while substance B has specific heat of combustion $q_{\text{spec},B}$ that is exactly half the value for A. Thus, compared with the amount of heat produced by combusting 1.00 mol of A, the amount produced by combusting 2.00 mol of B will be
 - less
 - the same
 - more
 - This cannot be determined w/o additional information.
4. (4) Calculate the value of $H^\circ - E^\circ$ at 25°C for the combustion of 1.00 mol of cyclohexane (C_6H_{12}) to produce $\text{CO}_2(g)$ and $\text{H}_2\text{O}(\ell)$. ($R = 8.3145 \text{ J mol}^{-1} \text{ K}^{-1}$.)
5. (4) In a calorimetry experiment at $\sim 25^\circ\text{C}$, 0.967 g of benzoic acid yields a T rise of 1.735 K. Then a second experiment run the same way, except using 1.237 g of an unknown, produces a T rise of 1.211 K. Calculate the specific heat of combustion for the unknown, given that the value for benzoic acid is -26.413 kJ/g .
6. (2) In the determination just above, suppose the masses are both uncertain by 0.005 g and the T s by 0.008 K. Calculate the uncertainty in q_{spec} for the unknown. (Hint: First write your computations in (5) as a single expression, if you have not already done so.)