

Chemistry 236 -- Quiz 4
March 26, 2013 — Least Squares, Probability, and KaleidaGraph

Lab Day _____

- 8) Discrete probability distributions are like continuous, except that sums over the possible outcomes replace integrals over the defined range for a continuous probability distribution. We explored this relation through **Statistics Problem 23**, which dealt with the probability distribution for a single toss of a 6-sided "true" die, having the numbers 1 – 6 on its sides. Give or derive: (a) the probability of getting a 4, (b) the probability of getting an even number, (c) the average value, (d) the variance, and (e) the standard deviation.
(a) 1/6 (b) 1/2 (c) 7/2 (d) 35/12 (e) $(35/12)^{1/2}$
- 5) Morely Smartt and Bud Wizer carry out measurements to determine the value of a quantity we will call the Quodacity Q , using an instrument and techniques known to have a standard deviation of 0.11 for *single* measurements. Smartt does 100 measurements and obtains the average value 3.6633, while Wizer runs just 4 and gets 3.6418.
 - Using the 10% rule, properly state the results of Smartt and Wizer and their uncertainties.
Smartt: 3.663(11) Wizer: 3.64(6)
 - If the true value of Q is thought to be 3.6981(7), which result — Smartt's or Wizer's — is the greater cause for "concern"? Be quantitative in your explanation.
Smartt's value differs from accepted by $> 3\%$, which occurs $< 0.3\%$ of the time by chance, so is probably indicative of systematic errors in his measurements. Wizer's is within about 1% , which is not so unreasonable.
- 5) In Experiment 2 (Inversion of sucrose), we obtained Arrhenius activation energies from values of the rate constant at T_1 and T_2 , using $\ln(k_2/k_1) = E_a/R (T_1^{-1} - T_2^{-1})$.
 - If k_2 has 2.5 % uncertainty and k_1 has 3.5 % uncertainty, what is the % uncertainty in their ratio? 4.3%
 - Assuming T_1 and T_2 have negligible uncertainty, use these results to give an expression for the uncertainty in E_a , in terms of R , T_1 , and T_2 .
 $E_a = [\ln(k_2/k_1)] R / (T_1^{-1} - T_2^{-1}) = 0.043 R / (T_1^{-1} - T_2^{-1})$.
- 3) You conclude that your thermistor calibration data for a bomb calorimetry setup are adequately represented by a quadratic function of the thermistor readout t (in $^{\circ}\text{C}$) over the calibration range 19–35 $^{\circ}\text{C}$. Write **exactly** what you should enter in the KG Define Fit box to fit your data in a way that you can directly read the uncertainty of calibration at 29 $^{\circ}\text{C}$ from the fit results box.
 $a + b*(x - 29) + c*(x-29)^2$; $a=1$; $b=1$; $c=1$ Then calib. error at 29 $^{\circ}\text{C}$ (apparent) is s_a .
- 5) In using KG to investigate the statistics of random numbers and the uniform probability distribution, we first generated 10^4 random numbers in the default range $0 < x < 1.0$.
 - Give the expected number of such random deviates that will fall in the range 0.20 – 0.36. 1600
 - What is the standard deviation of this expected bin count? 40
 - In another such binning experiment, the expected count is 900. Use the accompanying table to calculate the probability that the actual count will fall in the range 900-950.
 $= 30 \rightarrow t = 5/3 \rightarrow \text{probability} = 0.452$.