

A. (6) Calibration with 2-point functions.

1. A Baratron pressure gauge gives a reading of 0.27 V when $P = 0$, and 8.07 V when $P = 760$ torr. What is the apparent P when this gauge reads 3.33 V?

$$298.2 \text{ torr}$$

2. A particular thermistor shows a resistance of 19.27 k Ω at 10.0°C and 2.557 k Ω at 50.0 °C. The resistance is measured to be 8.93 k Ω when the thermistor is immersed in an unknown bath. What is the apparent temperature of the bath?

$$24.01 \text{ }^{\circ}\text{C}$$

B. (6) Calibration — Fitting the data. You obtain the illustrated results upon fitting your thermistor calibration data (true – apparent), obtained over the region 19–32°C.

1. Properly state the correction and its statistical error at 25°C.

$$0.0509(12) \text{ }^{\circ}\text{C}$$

2. If there are 29 data points, what is the estimated standard deviation (s_y) of these data?

$$0.00438^{\circ}$$

3. If the thermistor reads 20.47°C, what is the corrected temperature?

$$\text{corr} = 0.019^{\circ}; \quad t_{\text{cor}} = 20.49 \text{ }^{\circ}\text{C}$$

C. (14) Inversion of pickanose.

1. (3) The acid-catalyzed inversion of pickanose has a rate constant of 0.0324 L mol $^{-1}$ min $^{-1}$. A reaction is initiated by mixing 5.00 mL of 6.0 M HCl with 20.0 mL of a solution of pickanose. Assuming that volumes are additive, calculate the effective rate constant for this mixture; or indicate if you think that this cannot be done.

$$k_{\text{eff}} = 0.0389 \text{ min}^{-1}$$

2. (4) This reaction is monitored by polarimetry. The optical rotation is initially 25.0° and is –5.0° when the reaction has gone to completion. Calculate the rotation after (a) one half-life, and (b) after two half-lives; or indicate if you think there is insufficient information to determine these quantities.

$$10^{\circ} \text{ (first half life)} \quad 2.5^{\circ} \text{ (2nd)}$$

3. (3) The rate constant k_H increases by a factor of 3.9 when the temperature is increased from 20.0°C to 40.0°C. Calculate the activation energy E_a . [$R = 8.31451 \text{ J mol}^{-1} \text{ K}^{-1}$]

$$51.94 \text{ kJ/mol}$$

4. (4) Suppose that the $k_{H,20}$ and $k_{H,40}$ values are each uncertain by 10%.

(a) Calculate the % uncertainty in their ratio; use this result to state this ratio and its uncertainty.

$$14.1\% \quad 3.9(6)$$

(b) Calculate the uncertainty in $\ln(k_{H,40}/k_{H,20})$.

$$0.141$$

(c) Use the last result to calculate the uncertainty in E_a . (Take temperatures as error-free.)

$$\text{rel err in } E_a = 0.141/\ln(3.9) = 0.1036 \quad 5.38 \text{ kJ/mol} \quad 52(5) \text{ kJ/mol}$$