Chemistry 236 -- Quiz 3 October 28, 2009 — Experiments 1 and 2

Pledge and signature:

Note: If you want your paper returned folded (i.e., score concealed), please print your name on the back.

A. (6) Calibration with 2-point functions.

1. A Baratron pressure gauge gives a reading of 0.27 V when P = 0, and 8.07 V when P = 760 torr. What is the apparent P when this gauge reads 3.33 V?

2. A particular thermistor shows a resistance of $19.27 \, k$ at $10.0^{\circ} C$ and $2.557 \, k$ at $50.0 \, ^{\circ} C$. The resistance is measured to be $8.93 \, k$ when the thermistor is immersed in an unknown bath. What is the apparent temperature of the bath?

- B. (6) Calibration Fitting the data. You obtain the illustrated results upon fitting your thermistor calibration data (true – apparent), obtained over the region 19-32°C.
 - Properly state the correction and its statistical error at 25°C.

$y = a + b*(x-25) + c*(x-25)^2$		
	Value	Error
а	0.050861789	0.001247068
b	0.0036498518	0.0002037433
С	-0.00074572609	3.839555e-05
Chisq	0.00049905721	NA
R	0.96765516	NA

- 2. If there are 29 data points, what is the estimated standard deviation (s_v) of these data?
- 3. If the thermistor reads 20.47°C, what is the corrected temperature?

C. (14) Inversion of pickanose.

(3) The acid-catalyzed inversion of pickanose has a rate constant of 0.0324 L mol⁻¹ min⁻¹. A reaction is initiated by mixing 5.00 mL of 6.0 M HCl with 20.0 mL of a solution of pickanose. Assuming that volumes are additive, calculate the effective rate constant for this mixture; or indicate if you think that this cannot be done. (4) This reaction is monitored by polarimetry. The optical rotation is initially 25.0° and is -5.0° when the reaction has gone to completion. Calculate the rotation after (a) one half-life, and (b) after two half-lives; or indicate if you think there is insufficient information to determine these quantities. 3. (3) The rate constant $k_{\rm H}$ increases by a factor of 3.9 when the temperature is increased from 20.0° C to 40.0° C. Calculate the activation energy E_a . $[R = 8.31451 \text{ J mol}^{-1} \text{ K}^{-1}]$ 4. (4) Suppose that the $k_{\rm H}$ 20 and $k_{\rm H}$ 40 values are each uncertain by 10%. (a) Calculate the % uncertainty in their ratio; use this result to state this ratio and its uncertainty. (b) Calculate the uncertainty in $ln(k_{\rm H,40}/k_{\rm H,20})$. (c) Use the last result to calculate the uncertainty in E_a . (Take temperatures as error-free.)