

Pledge and signature:

Note: If you want your paper returned folded (i.e., score concealed), please print your name on the back.

1. (7) Consider the probability distribution, $P(x) = c x^2$, defined over the range $-1 \leq x \leq 2$. For this distribution, calculate: (a) the normalization constant, (b) the mean, (c) the variance, and (d) the standard deviation.

(a) $1/3$ (b) $5/4$ (c) $11/5 - (5/4)^2 = 51/80$ (d) $(51/80)^{1/2}$
2. (6) (a) If you generate 10^6 random numbers having this distribution, how many are expected to fall within the x range 1.40–1.50? And what is the standard deviation of this value?
 (b) If you now generate 10^6 such random numbers, what do you get in place of your results in 2a?
 (c) Compare the *per cent* standard deviations in a and b.

(a) 7011 and $(7011)^{1/2}$ (b) 70111 and $(70111)^{1/2}$ (c) 1.19% & 0.38%
3. (5) A quantity x is uncertain by 3.0% and y is uncertain by 4.0%. Give the % uncertainties for z in each of the following cases:

a. $z = 9/y$ 4 %	d. $z = 5 x/y^2$ $(73)^{1/2}$ %
b. $z = 3 x^4$ 12 %	e. $z = 23 y^2/x$ $(73)^{1/2}$ %
c. $z = 1/\sqrt{8x}$ 1.5 %	
4. (9) **Least Squares and KaleidaGraph.**
 - The declining exponential function with a background is a very commonly occurring functional form in the analysis of kinetics data. Write **exactly** what you should enter in the KG Define Fit box to fit your kinetics data to this relation

$a * \exp(-b * x) + c$; a = (nonzero value); b = (same); c = (same)
 - Why are bad initial values likely to give you more problems here than in, say, fitting calibration data to a quadratic polynomial?
 This is a truly **nonlinear** fit, whereas the polynomial fit is algebraically linear (hence guaranteed to converge for any acceptable starting values).
 - In one of your KG exercises, you generated 10^4 sums of 12 random numbers. Describe the shape of the resulting histogram, and give the expected mean and standard deviation.

Very nearly Gaussian, mean 6, st. dev. 1. [mean and for **sum** = 12*(values for **avgs** = 1/2 and 1/12).]

- Suppose instead you generated 10^4 sums of 16 random numbers. How would the results change? (Be quantitative.)

Gaussian, mean 8, st. dev. = $2/3^{1/2}$ [again, both = $16 * (\text{values for } \text{avgs} = 1/2 \text{ and } 1/(4 \sqrt{12}))$.]