

Pledge and signature:

Note: If you want your paper returned folded (*i.e.*, score concealed), please print your name on the back.

1. (3) In an adsorption experiment, the manifold volume is calibrated with a bulb having $V = 34.5 \text{ cm}^3$. Gas having $P = 207 \text{ Torr}$ is expanded from the bulb to the rest of the system (previously evacuated), giving $P = 79.3 \text{ Torr}$. Calculate the volume of the rest of the system.

$$V_{\text{rest}} = 55.5 \text{ mL}$$

2. (3) The volume just calculated includes a small connecting region between the calibration bulb and the manifold. Gas of $P = 195.2 \text{ Torr}$ is trapped in this section and then expanded into the manifold (previously evacuated), giving $P = 19.2 \text{ Torr}$. Calculate the volumes of (a) the connecting region and (b) the manifold.

$$V_x = 5.46 \text{ mL}$$

$$V_{\text{man}} = 50.1 \text{ mL}$$

3. (4) In a different system, a sample cell of volume 13.3 cm^3 is connected to a manifold having $V = 63.5 \text{ cm}^3$. The system is initially at $T = 299 \text{ K}$ with N_2 gas at $P = 178.3 \text{ Torr}$. Then the fat part of the sample cell is immersed in liquid N_2 (77.0 K) and the pressure drops to 139.2 Torr . Calculate the "cold volume."

$$V_{\text{cold}} = 7.48 \text{ mL}$$

4. (6) Adsorption data for the adsorbed amount v (STP cm^3) can be analyzed by fitting to two different relationships, one of which gives a straight-line presentation.

- Give the quantities "y" to be taken as dependent variable in each of these fits.
- Assuming the measured v s have constant uncertainty, how should the data in each of these two fits be weighted?
- If these data have proportional uncertainty ($v - v$), how should the data be weighted in each case?

(a) nonlinear: $y = v$ straight-line: $y = x v^{-1} (1-x)^{-1}$

(b) $w_i = 1/v^2$, so constant weighting 1st case (or unweighted);
Error prop $\rightarrow y/y = v/v$, leading to $w_i = [(1-x)/x]^2 v^4$ in 2nd.

(c) $y/y = v/v = \text{const.}$ Thus $w_i = 1/v^2$ 1st case, $w_i = 1/y^2 = [(1-x)/x]^2 v^2$ in 2nd.