Chemistry 230 -- Quiz 7 (Take-home) [No collaboration or help from others permitted on this assignment]

Due October 26, 2001 - Tellinghuisen

Pledge and signature:

1. (5) Calculate the molar entropy $S_{\mathrm{m}}{ }^{\circ}$ of carbon disulfide at $25^{\circ} \mathrm{C}$ from the following heat capacity data (units $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$) and the heat of fusion at the melting point (161.11 K): $\Delta H_{\mathrm{m}, \mathrm{fus}}=4389 \mathrm{~J} \mathrm{~mol}^{-1}$.

$\underline{T(\mathrm{~K})}$	$C_{P}^{e}{ }_{P, \mathrm{~m}}$	$\underline{T(\mathrm{~K})}$	$\underline{C}^{\oplus}{ }_{P, \mathrm{~m}}$	$\underline{T(\mathrm{~K})}$	$\underline{C_{P, \mathrm{~m}}}$
15.05	6.90	75.54	40.04	131.54	52.63
20.15	12.01	89.37	43.14	156.83	56.62
29.76	20.75	99.00	45.94	$161-298$	75.48
42.22	29.16	108.93	48.49		
57.52	35.56	119.91	50.50		

2. (10) Consider the reaction, $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightleftarrows \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$.
(a) Use appendix data from Levine to calculate $\Delta H^{\circ}, \Delta G^{\circ}, \Delta S^{\circ}, \Delta U^{\circ}$, and ΔA° at $25^{\circ} \mathrm{C}$.
(b) Similarly, use appendix data to calculate $\Delta H^{\circ}, \Delta G^{\circ}$, and K° at 1750 K for the similar reaction having the product $\mathrm{H}_{2} \mathrm{O}$ in the gaseous state.
(c) In the original reaction (producing liquid $\mathrm{H}_{2} \mathrm{O}$), suppose the methane is just burned at $25^{\circ} \mathrm{C}$ and $P=P^{\circ}$. Calculate q and w for this process.
(d) Now suppose the reaction is carried out reversibly at $25^{\circ} \mathrm{C}$ and P° in a fuel cell. Calculate (1) the non- $P V$ work done by the system on the surroundings; (2) the $P V$ work done by the system on the surroundings; (3) the total work w done on the system; and (4) the heat q added to the system.
(e) What is the maximum total work obtainable from this reaction (w_{by}) in any constant- T process?
3. (3) Repeat the calculations of 2(b) using the tabulated free energy functions given below.
4. (4) Consider the gaseous dissociation reaction, $\mathrm{O}_{2} \rightleftarrows 2 \mathrm{O} . \Delta G_{\mathrm{f}}^{\circ}$ for $\mathrm{O}(\mathrm{g})$ at 2900 K is 14.642 $\mathrm{kcal} / \mathrm{mol}$.
(a) Calculate K° for this reaction at 2900 K .
(b) Calculate the equilibrium partial P of O at this T when the total $P=1.00 \mathrm{~atm}$.
(c) What is the degree of dissociation α in this case? [Hint: See Problem 3 on PS 8.]
(d) What is the total P at 2900 K if the equilibrium mixture is $90 \mathrm{~mol} \% \mathrm{O}_{2}$?
5. (4) A certain amount of $\operatorname{NOBr}(g)$ is sealed in a flask, which is then heated to 350 K , where the NOBr partially dissociates to $\mathrm{NO}(\mathrm{g})$ and $\mathrm{Br}_{2}(\mathrm{~g})$. At equilbrium the total pressure is 0.675 atm , and the vapor density is $2.219 \mathrm{~g} / \mathrm{L}$.
(a) Write a balanced chemical equation for this dissociation, with $v=-1$ for NOBr .
(b) Calculate the partial pressures of the three components at equilibrium, and the equilibrium constant K°.

Gaseous elements and compounds with values referenced to $\boldsymbol{H}_{0}{ }^{\circ}$
$-\left(G_{T}-H_{0}{ }^{\circ}\right) / R T$

	$\mathbf{2 9 8 . 1 5} \mathbf{K}$	$\mathbf{5 0 0} \mathbf{K}$	$\mathbf{1 0 0 0} \mathbf{K}$	$\mathbf{1 5 0 0} \mathbf{K}$	$\mathbf{2 0 0 0} \mathbf{K}$	(\mathbf{K})	$\left(\mathbf{1 0}^{\mathbf{3}} \mathbf{K}\right)$
H_{2}	12.301	14.076	16.485	17.921	18.968	1018.5	-
O_{2}	21.173	22.992	25.521	27.088	28.243	1044.0	-
CO	20.275	22.086	24.558	26.069	27.183	1042.9	-13.69 ± 0.02
CO_{2}	21.934	24.001	27.246	29.445	31.138	1126.4	-4.29 ± 0.01
$\mathrm{H}_{2} \mathrm{O}$	18.716	20.802	23.674	25.493	26.881	1191.3	-28.736 ± 0.005
CH_{4}	18.376	20.531	24.00	26.63	28.82	1204.7	-7.999

