Pledge and signature:

Note: If you want your paper returned folded (i.e., score concealed), please print your name on the back.

1. (15) Consider the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftarrows 2 \mathrm{NH}_{3}$ (where all components are gases).
(a) Write the reaction equilibrium condition in a closed system. (Be specific for this reaction.)
(b) Suppose that initially a reaction vessel contains just $5.80 \mathrm{~mol} \mathrm{~N}_{2}$ and $6.20 \mathrm{~mol} \mathrm{NH}_{3}$. At a later time 6.50 mol of N_{2} is present. How much of each of the other components is present, and what is the extent of reaction ξ ?
(c) Suppose the reaction is rewritten, $\mathrm{NH}_{3} \rightleftarrows 1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2}$. Repeat the calculations of (b) for the same initial and final amounts of N_{2} and NH_{3}.
2. (7) For each of the following - $\mathrm{CCl}_{4}(l), \mathrm{H}(g), \mathrm{N}_{2}(g)-$
(a) Write the reaction of formation from reference-form elements at room T.
(b) Is $\Delta H_{f}{ }^{\circ}=0$ for any of these at $50^{\circ} \mathrm{C}$? If so, which ones?
3. (4) For each of the following closed systems, write the conditions for material equilibrium between phases:
(a) ice in equilibrium with liquid water.
(b) ice in equilibrium with an aqueous solution of sucrose.
(c) a two-phase system of ether and water, with each phase saturated with the other component.
