Chemistry 230 -- Quiz 4 September 26, 2001 — Tellinghuisen

Pledge and signature:

Note: If you want your paper returned folded (i.e., score concealed), please print your name on the back.

- 1. (11) The molar heat capacity of many gases can be taken to be a linear function of T over not-too-large ranges of T: $C_{P,m} = a + b$ T. n mol of $N_2(g)$ is initially at 300K and 1.00 atm and may be treated as a perfect gas.
 - Obtain expressions for q, w, ΔU , and ΔH for reversible heating of the gas to 400 K at constant P.

Obtain expressions for
$$q$$
, w , ΔU , and ΔH for reversible heating of the gas to 400 K at constant P .

$$q = q_p = \Delta H = \int_{-T_1}^{T_2} C_p dT = n \int_{300}^{400} (a+bT)dT = n \left[100a + \frac{b}{2} \left(400^2 - 300^2 \right) \right]$$

$$\Delta U = \int_{-T_1}^{T_2} C_V dT = \int_{-T_1}^{T_2} (C_p - nR) dT = \Delta H - 100 K nR$$

$$W = \Delta U - q$$

(b) How do your results change if the heating is carried out at constant V.

Consider $CF_4(g)$. Give the total degrees of freedom and the numbers of translational, rotational, and vibratational degrees of freedom.

$$3 N = 15 \text{ total}$$
. 3 transl , 3 rot ., 9 wib . If only translation and rotation contribute to the heat capacity of $CF_4(g)$, estimate $C_{V,m}$ and

 $C_{P,m}(\text{units }R)$, and γ for it.

$$C_{v,m} = \frac{3}{2}R + \frac{3}{2}R = 3R$$
; $C_{l,n} = 4R$; $\gamma = \frac{C_{l}}{C_{v}} = \frac{4}{3}$

- How much does vibration contribute to the heat capacity $C_{V,m}$ for $CF_4(g)$: (i) in the low-Tlimit? (ii) 9R (ii) in the high-T limit? (i) O
- Consider $CF_4(g)$ and $CBr_4(g)$ at 300K. Which should have the larger heat capacity.

3. (7) 1.00 mol of a gas which obeys the equation PV = nRT and has heat capacity $C_{P,m} = a + bT$ (independent of P), is taken from the initial state (P, V) = (10.00 atm, 3.00 L) to the final state (3.00 L)atm, 10.00 L). Calculate as many of the following as possible, and for others, indicate why they cannot be determined: ΔP , ΔV , ΔT , ΔU , ΔH , q, w.

$$P_1V_1 = P_2V_2$$
, so $T_2 = T_1$
 $G DP = -7.00 atm$; $DV = 7.00 L$; $DT = 0$
Hence $DU = DH = 0$. $g w$ are indeterminate, because the path is not specified.