Pledge and signature:

Note: If you want your paper returned folded (i.e., score concealed), please print your name on the back.

1. (8) Short problems:
(a) Evaluate $\int_{2}^{\infty} V^{-2} d V$:
(b) Calculate $\log _{10}\left(3.79 \times 10^{987}\right)$:
(c) Calculate $\log _{22} 8$:
(d) Find $d y / d x$ if $x y=y-2$:
2. (3) A sample of gas is contained in the mercury manometer shown at right. If the atmospheric pressure is 744 torr and $h=55 \mathrm{~mm}$, what is the pressure of the trapped gas (in torr)?
3. (10) Give the van der Waals equation for a real gas, and use it to calculate the pressure of a sample of CO_{2} at 311 K and a concentration of $1.000 \mathrm{~mol} / \mathrm{L}$. For $\mathrm{CO}_{2}, a=$ $3.59 \times 10^{6} \mathrm{~cm}^{6} \mathrm{~atm} \mathrm{~mol}^{-2}$ and $b=42.7 \mathrm{~cm}^{3} / \mathrm{mol}$. (See board for R values.)
4. (5) A hypothetical gas obeys the equation of state $P V=n R T\left(1+a P+b P^{2}\right)$, where a and b are constants. Give the definition of κ and use it to obtain an expression for κ for this gas.
