Chemistry 230 -- Quiz 10 (Take-home)

Due November 30, 2001, at noon — Tellinghuisen

Pledge and signature:

- 1. (3) Mixtures of ethanol and *n*-propanol behave ideally. At 36.4°C their vapor pressures are 108 torr (ethanol) and 40.0 torr.
 - (a) A certain mixture boils at 36.4°C and 72.0 torr. What are the compositions of the liquid and gaseous solutions present at equilibrium under these conditions?
 - (b) 1.50 mol of ethanol is mixed with 2.50 mol *n*-propanol at this *T*. Calculate (*i*) the vapor pressure of the solution, and (*ii*) G_{mix} , S_{mix} , and H_{mix} for the preparation of this solution.
- 2. (3) The Henry's law constant for O_2 in water at 25°C is 773 atm mol⁻¹ kg. Calculate (a) the solubility (m) of O_2 in water at P = 1.00 atm and 25°C, and (b) $G^{\circ}_{f,298}$ for $O_2(aq)$ (using the molality-based reference state).
- 3. (3) A regular binary solution is characterized by the following expressions for the chemical potentials:

$$\mu_{A} = \mu_{A}^{*} + RT \ln x_{A} + w x_{B}^{2};$$

$$\mu_{B} = \mu_{B}^{*} + RT \ln x_{B} + w x_{A}^{2}.$$

- (a) Obtain expressions for the activity coefficients I,A and I,B for such a solution.
- (b) Assuming that w is independent of T, obtain expressions for G_{mix} , S_{mix} , H_{mix} , and V_{mix} for such a solution.
- 4. (6) At 387.5°C the vapor pressures of K and Hg are 3.25 torr and 1280 torr, respectively. Measurements of the vapor pressures of potassium amalgams at this *T* yield the following results:

mol % K:	41.1	46.8	50.0	56.1	63.0	72.0
$P_{\rm Hg}({\rm torr})$:	31.87	17.3	13.0	9.11	6.53	3.70
$P_{\mathbf{K}}(\text{torr})$:	0.348	0.68	1.07	1.69	2.26	2.95

- (a) Calculate the Convention I activity coefficients for both components and plot them vs. composition in the range studied.
- (b) Calculate the molar excess Gibbs energy G^E/n for the amalgam over this same range and plot it also. (<u>Hint</u>: See Section 10.2 of Levine and Figure 10.1.)
- (c) Comment on the nature of the deviations from ideality for K/Hg solutions in this composition range.
- 5. (6) At 25°C a saturated solution of sucrose in water has a density of 1.330 g/cm³, while that of water is 0.99707 gm/cm³. This solution has a molality $m = 6.05 m^{\circ}$ and activity coefficient m = 2.87.
 - (a) For this saturated solution, calculate a_m , II, and a_{II} . (Hint: See Problem 10.10 in Levine.)
 - (b) Determine $G_{f,298}^{\circ}$ for sucrose (aq) on the molality scale [Hint: How are $\mu(\text{sucrose}, aq)$ and $\mu(\text{sucrose}, s)$ related in the saturated solution?].
 - (c) Calculate $G_{f,298}^{\circ}$ for sucrose (aq) on the Convention II mole fraction scale.
 - (d) Use results from problem 10.12 in Levine to determine c and a for this same solution. Compare your results with Fig. 10.7.
- 6. (5) The enthalpy of mixing for dissolving m moles of NaCl in 1.000 kg of water at 25°C is given by $H_{\text{mix}} = 3.861 \ m + 1.992 \ m^{3/2} 3.038 \ m^2 + 1.019 \ m^{5/2}$.

Calculate (a) $H_{\rm int,NaCl}$ for forming a 2.00 m° solution, (b) $H_{\rm int,NaCl}$, (c) H for diluting a solution containing 1.000 mol NaCl from a concentration of 2.00 m° to 0.100 m° , (d) $H_{\rm diff,NaCl}$ at 2.00 m° , and (e) $H_{\rm diff,H_2O}$ at 2.00 m° .