Chemistry 230
 Problem Set \# 9-10/27/99

Recommended Problems: \quad Chapt. 7: 1-15, 21, 22, 24, 28, 31, 35-38, 42

1. Problem 7.25 in Levine. (d) Is there any indication of a temperature dependence in $\Delta H_{\mathrm{m} \text {,vap }}$ over this temperature range? Explain.
2. Using your results from the preceding problem, calculate $\Delta H^{\circ}{ }_{\mathrm{m}}, \Delta G^{\circ}{ }_{\mathrm{m}}$, and $\Delta S^{\circ}{ }_{\mathrm{m}}$ for the vaporization of Hg at $100.0^{\circ} \mathrm{C}$. (Treat the vapor as ideal. For the liquid, the molar volume and α can be obtained from information given in problem 4.15 in Levine.)
3. The heat of fusion of Hg at its normal melting point, $-38.9^{\circ} \mathrm{C}$, is $2.82 \mathrm{cal} / \mathrm{g}$. The densities of $\mathrm{Hg}(s)$ and $\mathrm{Hg}(l)$ at the normal melting point are 14.193 and $13.690 \mathrm{~g} / \mathrm{cm}^{3}$, respectively. Estimate the melting point of Hg at (a) 65 atm , and (b) 465 atm .
4. The vapor pressure of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is 40.0 torr at $19.0^{\circ} \mathrm{C}$. (a) 1.99 g of ethanol is placed in an $11.1-\mathrm{L}$ vessel at $19.0^{\circ} \mathrm{C}$. State what phase(s) are present at equlibrium and calculate the amounts (masses) of ethanol present in each phase. (b) Repeat the calculation for a vessel having a volume of 21.1 L.
5. At 293 K the vapor pressure of $\mathrm{I}_{2}(s)$ is 0.25 torr and its density is $4.93 \mathrm{~g} / \mathrm{cm}^{3}$. Use the "Gibbs equation" to estimate the vapor pressure of iodine under a $1.00 \times 10^{3}-\mathrm{atm}$ pressure of Ar. [Hint : See Problem 7.43 in Levine.]
6. From the following data, sketch the phase diagram of nitrogen at low T. There are three crystal forms $-\alpha, \beta$, and γ - which coexist at 4650 atm and 44.5 K . At this triple point, the volume changes ΔV_{m} (in $\mathrm{cm}^{3} / \mathrm{mol}$) are $0.165(\gamma \rightarrow \alpha), 0.208(\gamma \rightarrow \beta)$, and $0.043(\alpha \rightarrow \beta)$. At 1.0 atm and $36 \mathrm{~K}, \alpha \rightarrow \beta$ with $\Delta V_{\mathrm{m}}=0.22 \mathrm{~cm}^{3} / \mathrm{mol}$. The ΔS_{m} values for the cited transitions are $1.25,5.88,4.59$, and 6.52 J $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$, respectively. [Hint: See J. Swenson, J. Chem. Phys. 23, 1963 (1955).]
7. Here is another variation on the theme we have visited several times already: the conversion of supercooled water to ice (or vice versa - see problems $6 \& 7$ on PS 5 and 3 b on PS 6). At $-10.0^{\circ} \mathrm{C}$ the vapor pressure of ice is 1.950 torr and that of supercooled water is 2.149 torr. Our previous results at this temperature yielded for the molar heat of fusion (at $P=1.00 \mathrm{~atm}$), $\Delta H_{\text {fus, }}=5.62 \mathrm{~kJ} / \mathrm{mol}$. Use this information to evaluate ΔG_{m} and ΔS_{m} for the process water \rightarrow ice at $-10.0^{\circ} \mathrm{C}$ and 1.00 atm . Compare your results with those obtained in problems 6 on PS 5 and 3b on PS 6 (converted to molar quantities). Based on your results, should this process occur spontaneously?
