Chemistry 230 Problem Set # 8 -- Answers

1. For NH₃(g),
$$H^{\circ}_{m,298} = H^{\circ}_{f,298}$$
, since $H^{\circ}_{m,298} = 0$ for both H₂(g) and N₂(g).
Thus $H^{\circ}_{m,298} = -46.11$ kJ/mol.
 $S^{\circ}_{m,298} = 192.45$ J mol⁻¹ K⁻¹ (from Appendix).
 $G^{\circ}_{m,298} = H^{\circ}_{m,298} - 298.15$ $S^{\circ}_{m,298} = -103.489$ kJ/mol.
 $H^{\circ}_{m,325} = H^{\circ}_{m,298} + \frac{325}{298}C^{\circ}_{P,m} dT = H^{\circ}_{m,298} + C^{\circ}_{P,m,298} (325 - 298.15) = -45.169$ kJ/mol.
 325
 $S^{\circ}_{m,325} = S^{\circ}_{m,298} + \frac{C^{\circ}_{P,m}}{T} dT = 195.473$ J mol⁻¹ K⁻¹.
 $\mu^{\circ}_{325} = G^{\circ}_{m,325} = -108.698$ kJ/mol $\mu(T,P) = \mu^{\circ}_{T} + RT \ln(P/P^{\circ}) = -106.065$ kJ/mol.

- 2. (a) Use the equation for $H^{\circ}(T)$ given on p. 147 in Eq. (6.37), and integrate: $2R \ln \frac{KP^{\circ}(T)}{KP^{\circ}(298)} = A' \frac{1}{298.15\text{K}} - \frac{1}{T} + D \ln \frac{T}{298.15\text{K}} + E(T - 298.15\text{K}) + \frac{F}{2} \frac{1}{298.15^2 \text{ K}^2} - \frac{1}{T^2}$ $A' = -571.528 \text{ kJ/mol}; D = 1.51 \text{ J mol}^{-1} \text{ K}^{-1}; E = 2.85 \times 10^{-3} \text{ J mol}^{-1} \text{ K}^{-2}; F = 1448 \text{ kJ mol}^{-1} \text{ K}.$ (b) $\ln KP^{\circ}(298) = 103.74909 \quad \ln KP^{\circ}(1500) = 12.2098 \quad KP^{\circ}(1500) = 2.01 \times 10^5.$
- 3. A(g) 2 B(g) At equilibrium we have $n_0 (1-) \mod A$ and $2 n_0 \mod B$ $K_P^\circ = \frac{2}{1+} \frac{2}{1+} \frac{1+}{1-} \frac{P}{P^\circ}$ Solve for : $= \frac{K_P^\circ}{4 (P/P^\circ) + K_P^\circ} \frac{1/2}{1+}$

Increasing T increases , while increasing P decreases .

4. A(g) B(g) + C(g) At equilibrium we have $n_0 (1-) \mod A$ and $n_0 \mod of$ each of B and C. $K_P^{\circ} = \frac{2}{1+} \frac{2}{1+} \frac{1+}{1-} \frac{P}{P^{\circ}} = \frac{2}{1-2} \frac{P}{P^{\circ}} = \frac{K_P^{\circ}}{(P/P^{\circ}) + K_P^{\circ}} \frac{1/2}{P}$ $H^{\circ}_{298} = 87.9 \text{ kJ/mol}; \quad S^{\circ}_{298} = 170.26_6 \text{ J mol}^{-1} \text{ K}^{-1};$ $H^{\circ}_{500} = 86.4_8 \text{ kJ/mol}; \quad S^{\circ}_{500} = 166.62_0 \text{ J mol}^{-1} \text{ K}^{-1}$ $G^{\circ}_{500} = 3.1_7 \text{ kJ/mol}$ $K_P^{\circ} = 0.46_7.$ (a) At fixed $P = 0.900 \text{ bar}, = 0.58_4.$ (b) Now $P = P_0 (1+)$, where P_0 is the initial P. Thus $K_P^{\circ} = \frac{2}{1-} \frac{P_0}{P^{\circ}} = 0.50_6.$ 5. (d) $G^{\circ}_{500} = 9.69 \text{ kJ/mol}$ $K_P^{\circ} = e^{-2.33086} = 0.0972_1.$ $27 K_P^{\circ} = \frac{2 (2-)^2}{(1-)^4} = 0.3822 \text{ (trial & error)}$ P's(bar): N₂ - 0.764; H₂ - 2.29₂; NH₃ - 0.945. (e) [See plots.]

6. (a) Now
$$P_{\text{tot}} = (4-2)P^{\circ}$$
 Ps(bar): N₂ — (1–); H₂ — (3–3); NH₃ — 2.
(b) $A = G - PV = G - n_{\text{tot}}RT = \mu_i n_i - (4-2)RT$
(d) $27 K_P^{\circ} = \frac{4^2}{(1-)^4} = 0.3462$ P's(bar): N₂ — 0.654; H₂ — 1.96₂; NH₃ — 0.692.

Solution of Equilibrium Problems

Example: N₂ + 3 H₂ 2 NH₃
$$K = \frac{P_{\text{NH}_3}^2}{P_{\text{N}_2} P_{\text{H}_2}^3}$$

Start with Example 8-4, p 289. Using the ideal gas law we obtain the three given initial pressures, and hence $Q = \frac{(22)^2}{(55)(11)^3} = 6.6 \times 10^{-3}$. Since this $Q > K = 1.9 \times 10^{-4}$, the reaction will proceed from right to left. Let us now solve for the equilibrium state, using trial-and-error substitution into the expression for Q. First express Q as follows:

 $Q = \frac{(22-2x)^2}{(55+x)(11+3x)^3}$, in which we take account of the reaction stoichiometry. Next we simply substitute for x in trial-and-error fashion:

<u>x</u>	Q
2	1.157×10^{-3}
3	5.517×10-4
4	2.73×10-4
5	1.365×10-4
4.5	1.931×10-4
4.6	1.802×10^{-4}
4.52	1.904×10-4

Thus, at equilibrium, $P_{\rm NH_3} = 12.96$, $P_{\rm N_2} =$

59.52, and $P_{\text{H}_2} = 24.56$. Now let us decrease *V* by a factor of 2. Now Q = K/4, so the reaction must proceed to the right. The new equation we must solve is

$$K = \frac{(25.92+2x)^2}{(119.04-x)(49.12-3x)^3}$$

$$\frac{x}{2} \qquad Q$$

$$1 \qquad 6.73 \times 10^{-5}$$

$$2 \qquad 9.54 \times 10^{-5}$$

$$4 \qquad 1.955 \times 10^{-4}$$

$$3.9 \qquad 1.885 \times 10^{-4}$$

$$3.92 \qquad 1.899 \times 10^{-4}$$

The new equilibrium *P*s are $P_{\rm NH_3} = 33.76$,

 $P_{N_2} = 115.12$, $P_{H_2} = 37.36$. Now let us see what happens when we add some H₂ to the equilibrium mix at the end of the first calculation. Let us increase the pressure of H₂ by 5.00 atm. This will drive the reaction toward the right, and the equation we must solve is

$$K = \frac{(12.96+2x)^2}{(59.52-x)(29.56-3x)^3}:$$

$$\frac{x}{2} \qquad Q$$

$$2 \qquad 3.82 \times 10^{-4}$$

$$1 \qquad 2.04 \times 10^{-4}$$

$$0.8 \qquad 1.802 \times 10^{-4}$$

$$0.88 \qquad 1.894 \times 10^{-4}$$

$$0.89 \qquad 1.906 \times 10^{-4}$$

Thus the final *P*s in this case are $P_{\rm NH_3} =$

14.74,
$$P_{N_2} = 58.63$$
, $P_{H_2} = 26.89$.

Example: 2 NO(g) + Cl₂(g) 2 NOCl(g) [Prob. I, 3rd test] $K = \frac{P_{\text{NOCl}}^2}{P_{\text{NO}}^2 P_{\text{Cl}_2}}$

In part F we find that $Q = \frac{(2)^2}{(2)^2(2)} = 0.5$. Since this Q < K = 2.73, the reaction will proceed from left to right. As before let us solve for the equilibrium state, using trial-and-error substitution into the expression for Q. First express Q as follows:

 $Q(x) = \frac{(2+2x)^2}{(2-2x)^2 (2-x)}$, in which we take account of the reaction stoichiometry.

Next we substitute for x in trial-and-error fashion:

<u>X</u>	Q
0.5	6.00
0.4	3.403
0.3	2.029
0.35	2.614
0.36	2.753
0.358	2.725
0.359	2.739
0.3583	2.7292
0.3584	2.7306

We know that the gas pressures are convertible to concentrations through the

ideal gas law: $c = [] = \frac{n}{V} = \frac{P}{RT}$. Thus, at equilibrium, we have the following pressures and concentrations:

	<u>P(atm)</u>	[] (mol/L)
NO	1.283	0.02728
Cl ₂	1.642	0.03490
NOCl	2.717	0.05776

Substitution of these P's back into the expression for K above verifies that this is

indeed an equilibrium state. Furthermore, if we substitute these **concentrations** into the equivalent expression for the concentration equilibrium constant,

$$K_c = \frac{[\text{NOC1}]^2}{[\text{NO}]^2 [\text{Cl}_2]},$$

we obtain a numerical value of 128.4, in agreement with the answer to part E, which we obtained using the relation,

$$K_c = K (RTc^{\circ}/P^{\circ})^{-n}.$$

Thus we see that the concentration and pressure equilibrium laws provide an **equivalent** description of the reaction: Had we started with

$$Q_c(y) = \frac{(a+2y)^2}{(a-2y)^2 \ (a-y)},$$

where a = (2 atm/RT) = 0.04252 mol/L, and solved for the value of *y* needed to yield $Q_c(y) = K_c = 128.4$, we would have obtained **directly** the concentrations obtained above by simply converting the equilibrium *P*s for the three substances.

Note: In all these calculations, the reference P° was 1.00 atm instead of 1.00 bar. You can easily convert the K_{P}° values to the 1.00 bar reference state by converting the equilibrium P values in atm to bar and then just recomputing the equilibrium expression. On the other hand the K_{c}° values do <u>not</u> require correction. (Why not?)