Chemistry 230

Problem Set \# 8 -- Answers

1. For $\mathrm{NH}_{3}(g), H_{\mathrm{m}, 298}^{\circ}=\Delta H^{\circ}{ }_{f, 298}$, since $H^{\circ}{ }_{\mathrm{m}, 298}=0$ for both $\mathrm{H}_{2}(g)$ and $\mathrm{N}_{2}(g)$.

Thus $H^{\circ}{ }_{\mathrm{m}, 298}=-46.11 \mathrm{~kJ} / \mathrm{mol}$.
$S^{\circ}{ }_{\mathrm{m}, 298}=192.45 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ (from Appendix).
$G^{\circ}{ }_{\mathrm{m}, 298}=H_{\mathrm{m}, 298}^{\circ}-298.15 S_{\mathrm{m}, 298}^{\circ}=-103.489 \mathrm{~kJ} / \mathrm{mol}$.
$H^{\circ}{ }_{\mathrm{m}, 325}=H_{\mathrm{m}, 298}^{\circ}+\int_{298}^{325} C^{\circ}{ }_{P, \mathrm{~m}} d T \approx H^{\circ}{ }_{\mathrm{m}, 298}+C^{\circ}{ }_{P, \mathrm{~m}, 298}(325-298.15)=-45.169 \mathrm{~kJ} / \mathrm{mol}$.
$S^{\circ}{ }_{\mathrm{m}, 325}=S^{\circ}{ }_{\mathrm{m}, 298}+\int_{298}^{325} \frac{C^{\circ}{ }_{P, \mathrm{~m}}}{T} d T=195.47_{3} \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
$\mu^{\circ}{ }_{325} \equiv G^{\circ}{ }_{\mathrm{m}, 325}=-108.69_{8} \mathrm{~kJ} / \mathrm{mol} \Rightarrow \mu(T, P)=\mu^{\circ}{ }_{T}+R T \ln \left(P / P^{\circ}\right)=-106.065 \mathrm{~kJ} / \mathrm{mol}$.
2. (a) Use the equation for $\Delta H^{\circ}(T)$ given on p. 147 in Eq. (6.37), and integrate:
$2 R \ln \frac{K_{P^{\circ}}(T)}{K_{P}(298)}=A^{\prime}\left(\frac{1}{298.15 \mathrm{~K}}-\frac{1}{T}\right)+D \ln \left(\frac{T}{298.15 \mathrm{~K}}\right)+E(T-298.15 \mathrm{~K})+\frac{F}{2}\left(\frac{1}{298.15^{2} \mathrm{~K}^{2}}-\frac{1}{T^{2}}\right)$
$A^{\prime}=-571.528 \mathrm{~kJ} / \mathrm{mol} ; D=1.51 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} ; E=2.85 \times 10^{-3} \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-2} ; F=1448 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}$.
(b) $\ln K_{P}{ }^{\circ}(298)=103.74909 \Rightarrow \ln K_{P}{ }^{\circ}(1500)=12.2098 \Rightarrow K_{P}{ }^{\circ}(1500)=2.01 \times 10^{5}$.
3. $\mathrm{A}(g) \leftrightarrow 2 \mathrm{~B}(g) \Rightarrow$ At equilibrium we have $n_{0}(1-\alpha) \mathrm{mol} \mathrm{A}$ and $2 \alpha n_{0} \mathrm{~mol} \mathrm{~B}$ $K_{P}{ }^{\circ}=\left(\frac{2 \alpha}{1+\alpha}\right)^{2}\left(\frac{1+\alpha}{1-\alpha}\right)\left(\frac{P}{P^{\circ}}\right) \Rightarrow \quad$ Solve for $\alpha: \quad \alpha=\left[\frac{K P^{\circ}}{4\left(P / P^{\circ}\right)+K_{P}{ }^{\circ}}\right]^{1 / 2}$
Increasing T increases α, while increasing P decreases α.
4. $\mathrm{A}(g) \leftrightarrow \mathrm{B}(g)+\mathrm{C}(g) \Rightarrow$ At equilibrium we have $n_{0}(1-\alpha) \mathrm{mol} \mathrm{A}$ and $\alpha n_{0} \mathrm{~mol}$ of each of B and C .
$K_{P}{ }^{\circ}=\left(\frac{\alpha}{1+\alpha}\right)^{2}\left(\frac{1+\alpha}{1-\alpha}\right)\left(\frac{P}{P^{\circ}}\right)=\left(\frac{\alpha^{2}}{1-\alpha^{2}}\right)\left(\frac{P}{P^{\circ}}\right) \Rightarrow \alpha=\left[\frac{K_{P}{ }^{\circ}}{\left(P / P^{\circ}\right)+K_{P}{ }^{\circ}}\right]^{1 / 2}$
$\Delta H^{\circ}{ }_{298}=87.9 \mathrm{~kJ} / \mathrm{mol} ; \Delta S^{\circ}{ }_{298}=170.266_{6} \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$;
$\Delta H^{\circ}{ }_{500}=86.48 \mathrm{~kJ} / \mathrm{mol} ; \Delta S^{\circ}{ }_{500}=166.62_{0} \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \Rightarrow \Delta G^{\circ}{ }_{500}=3.17 \mathrm{~kJ} / \mathrm{mol} \Rightarrow K_{P}{ }^{\circ}=0.467$.
(a) At fixed $P=0.900$ bar, $\alpha=0.584$.
(b) Now $P=P_{0}(1+\alpha)$, where P_{0} is the initial P. Thus $K_{P}{ }^{\circ}=\left(\frac{\alpha^{2}}{1-\alpha}\right)\left(\frac{P_{0}}{P^{0}}\right) \Rightarrow \alpha=0.50_{6}$.
5. (d) $\Delta G^{\circ}{ }_{500}=9.69 \mathrm{~kJ} / \mathrm{mol} \Rightarrow K_{P}{ }^{\circ}=\mathrm{e}^{-2.33086}=0.0972{ }_{1}$.
$27 K_{P}{ }^{\circ}=\frac{\xi^{2}(2-\xi)^{2}}{(1-\xi)^{4}} \Rightarrow \xi=0.3822$ (trial \& error) \Rightarrow
$P '$ s(bar): $\mathrm{N}_{2}-0.764 ; \mathrm{H}_{2}-2.299_{2} ; \mathrm{NH}_{3}-0.945$.
(e) [See plots.]
6. (a) Now $P_{\text {tot }}=(4-2 \xi) P^{\circ} \Rightarrow P \mathrm{~s}(\mathrm{bar}): \mathrm{N}_{2}-(1-\xi) ; \mathrm{H}_{2}-(3-3 \xi) ; \mathrm{NH}_{3}-2 \xi$.
(b) $A=G-P V=G-n_{\mathrm{tot}} R T=\Sigma \mu_{i} n_{i}-(4-2 \xi) R T$
(d) $27 K_{P}{ }^{\circ}=\frac{4 \xi^{2}}{(1-\xi)^{4}} \Rightarrow \xi=0.3462 \Rightarrow P^{\prime} \mathrm{s}($ bar $): \mathrm{N}_{2}-0.654 ; \mathrm{H}_{2}-1.96{ }_{2} ; \mathrm{NH}_{3}-0.692$.

Solution of Equilibrium Problems

Example:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightarrow 2 \mathrm{NH}_{3} \quad K=\frac{P_{\mathrm{NH}_{3}}^{2}}{P_{\mathrm{N}_{2}} P_{\mathrm{H}_{2}}^{3}}
$$

Start with Example 8-4, p 289. Using the ideal gas law we obtain the three given initial pressures, and hence $Q=\frac{(22)^{2}}{(55)(11)^{3}}=6.6 \times 10^{-3}$. Since this $Q>K=1.9 \times 10^{-4}$, the reaction will proceed from right to left. Let us now solve for the equilibrium state, using trial-and-error substitution into the expression for Q. First express Q as follows:

$$
Q=\frac{(22-2 x)^{2}}{(55+x)(11+3 x)^{3}} \text {, in which we take account of the reaction stoichiometry. }
$$

Next we simply substitute for x in trial-and-error fashion:

\underline{x}	Q
2	1.157×10^{-3}
3	5.517×10^{-4}
4	2.73×10^{-4}
5	1.365×10^{-4}
4.5	1.931×10^{-4}
4.6	1.802×10^{-4}
4.52	1.904×10^{-4}

Thus, at equilibrium, $P_{\mathrm{NH}_{3}}=12.96, P_{\mathrm{N}_{2}}=$ 59.52 , and $P_{\mathrm{H}_{2}}=24.56$. Now let us decrease V by a factor of 2 . Now $Q=$ $K / 4$, so the reaction must proceed to the right. The new equation we must solve is

$$
\begin{array}{ll}
K= & \frac{(25.92+2 x)^{2}}{(119.04-x)(49.12-3 x)^{3}} . \\
\underline{x} & Q \\
1 & 6.73 \times 10^{-5} \\
2 & 9.54 \times 10^{-5} \\
4 & 1.955 \times 10^{-4} \\
3.9 & 1.885 \times 10^{-4} \\
3.92 & 1.899 \times 10^{-4}
\end{array}
$$

The new equilibrium P s are $P_{\mathrm{NH}_{3}}=33.76$,
$P_{\mathrm{N}_{2}}=115.12, P_{\mathrm{H}_{2}}=37.36$. Now let us see what happens when we add some H_{2} to the equilibrium mix at the end of the first calculation. Let us increase the pressure of H_{2} by 5.00 atm . This will drive the reaction toward the right, and the equation we must solve is

$$
\begin{array}{ll}
K= & \frac{(12.96+2 x)^{2}}{(59.52-x)(29.56-3 x)^{3}}: \\
\underline{x} & Q \\
2 & 3.82 \times 10^{-4} \\
1 & 2.04 \times 10^{-4} \\
0.8 & 1.802 \times 10^{-4} \\
0.88 & 1.894 \times 10^{-4} \\
0.89 & 1.906 \times 10^{-4}
\end{array}
$$

Thus the final P s in this case are $P_{\mathrm{NH}_{3}}=$
$14.74, P_{\mathrm{N}_{2}}=58.63, P_{\mathrm{H}_{2}}=26.89$.

More on Solution of Equilibrium Problems

Example: $2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \leftrightarrow 2 \mathrm{NOCl}(g)$ [Prob. I, 3rd test]

$$
K=\frac{P_{\mathrm{NOCl}}^{2}}{P_{\mathrm{NO}}^{2} P_{\mathrm{Cl}_{2}}}
$$

In part F we find that $Q=\frac{(2)^{2}}{(2)^{2}(2)}=0.5$. Since this $Q<K=2.73$, the reaction will proceed from left to right. As before let us solve for the equilibrium state, using trial-anderror substitution into the expression for Q. First express Q as follows:

$$
Q(x)=\frac{(2+2 x)^{2}}{(2-2 x)^{2}(2-x)} \text {, in which we take account of the reaction stoichiometry. }
$$

Next we substitute for x in trial-and-error fashion:

[^0]
[^0]: Note: In all these calculations, the reference P° was 1.00 atm instead of 1.00 bar. You can easily convert the $K_{P}{ }^{\circ}$ values to the 1.00 bar reference state by converting the equilibrium P values in atm to bar and then just recomputing the equilibrium expression. On the other hand the $K_{c}{ }^{\circ}$ values do not require correction. (Why not?)

