Chemistry 230
 Problem Set \# 7 - 10/11/99

Recommended Problems: \quad Chapt. 5: 2, 3, 10, 12, 13, 17, 26, 29, 40, 49, 52

1. Tungsten carbide is burned in excess O_{2} in a bomb calorimeter, where it undergoes the reaction,

$$
\mathrm{WC}(s)+5 / 2 \mathrm{O}_{2} \rightarrow \mathrm{WO}_{3}(s)+\mathrm{CO}_{2}
$$

It is found that ΔU° for this reaction at 300 K is $-1192 \mathrm{~kJ} / \mathrm{mol}$. Calculate $\Delta H^{\circ}{ }_{300}$.
Given that the heats of combustion of C (graphite) and $\mathrm{W}(s)$ at 1.00 bar and 300 K are -393.5 and $-837.5 \mathrm{~kJ} / \mathrm{mol}$, respectively, calculate $\Delta H_{f, 300}^{\circ}$ for $\mathrm{WC}(s)$.
2. Problem 5.19 in Levine. Also calculate $S_{\mathrm{m}, 1000}^{\circ}, \Delta S_{f, 1000}^{\circ}$, and $\Delta G_{f, 1000}^{\circ}$.
3. Heat capacity data have been obtained for triptycene $\left(\mathrm{C}_{20} \mathrm{H}_{14}\right)$ between 10.0 K and 527.18 K for solid, and between 527.18 K and 550.0 K for liquid. [The data are available in tabular form at 28 temperatures in this range and can be obtained by copying the following CTRVAX file into your account: PUB6:[TELLINJB]TRIP.DAT. They are also available on the course web site, at the following URL: http://www.vanderbilt.edu/AnS/Chemistry/Tellinghuisen/Chem230/TRIP.DAT.] The compound melts at 527.18 K with $\Delta H_{\text {fus, } \mathrm{m}}^{\circ}=7236 \mathrm{cal} / \mathrm{mol}$. Use numerical integration to evaluate (a) $S^{\circ}{ }_{\mathrm{m}, 298}$ for $\mathrm{C}_{20} \mathrm{H}_{14}(s)$; (b) $S^{\circ}{ }_{\mathrm{m}, 550}$ for $\mathrm{C}_{20} \mathrm{H}_{14}(l)$; (c) $H^{\circ}{ }_{\mathrm{m}, 298}-H_{\mathrm{m}, 0}^{\circ}$. [Hint: See Problem 5.22 for a review of the trapezoidal rule and Problem 5.23 for its application to a situation just like the present one. You may also find it convenient to use the "Integrate" Macro in KaleidaGraph.]
4. Problems 5.5 and 5.27 in Levine. Use these results to calculate $\Delta G^{\circ} 298$ for each reaction, and compare the results with those obtained using the $\Delta G^{\circ} f, 298$ values given in the Appendix.
5. Some values for $\left(H^{\circ}, 1500-H_{m, 298}^{\circ}\right)$ (in $\mathrm{kcal} / \mathrm{mol}$) are 9.706 for $\mathrm{O}_{2}(g), 9.179$ for $\mathrm{N}_{2}(g)$, and 14.176 for $\mathrm{NO}_{2}(g)$. Use these data with Appendix data to find $\Delta H^{\circ} f, 1500$ for $\mathrm{NO}_{2}(g)$.
For $T=1500 \mathrm{~K}$, some values of the "free energy function," $-\left(G^{\circ}{ }_{\mathrm{m}, T}-H^{\circ}{ }_{\mathrm{m}, 298}\right) / T$, in $\mathrm{cal} /(\mathrm{mol} \mathrm{K})$, are 55.185 for $\mathrm{O}_{2}(g), 51.665$ for $\mathrm{N}_{2}(g)$, and 65.982 for $\mathrm{NO}_{2}(g)$. Use these data along with Appendix data to determine $\Delta G_{f, 1500}^{\circ}$ for $\mathrm{NO}_{2}(g)$. [Hint: See problems 5.37 and 5.38 in Levine.]

