Chemistry 230
 Problem Set \# 6 -- Answers

1. See soln manual. Note that $\ln (1-p) \approx-p$ when $p \ll 1$.
(a) $0.1 \geq(11 / 12)^{n} \rightarrow n=27$
(b) $N^{-1 / 2}=0.01 \rightarrow N=10^{4}$.
2. (a) $\Delta H=374.5$ (374.48) $\mathrm{cal} ; \Delta S=1.479_{3} \mathrm{cal} / \mathrm{K}$.
(b) $\Delta H=2003$ (2002.8) $\mathrm{cal} ; \Delta S=6.248(6.2479) \mathrm{cal} / \mathrm{K}$.
(c) $\Delta H=3839(3839.2) \mathrm{cal} ; \Delta S=6.992_{1} \mathrm{cal} / \mathrm{K}$.
(d) $\Delta H=18.66(18.657) \mathrm{kcal} ; \Delta S=50.75(50.749) \mathrm{cal} / \mathrm{K} ; \Delta U=\Delta H-\Delta(P V)=16.95_{1} \mathrm{kcal}$.
3. (a) Since both phase changes are equilibrium processes at fixed T and $P, \Delta G=0$ for both. $\Delta A=\Delta G-$ $\Delta(P V) \approx 0$ for fusion, but $=-823$ cal for vaporization.
(b) Since $\Delta U \approx \Delta H, \Delta A \approx \Delta G=\Delta H-T \Delta S=28.1_{3} \mathrm{cal}$ (for 10.00 g); 56.26 cal (for 20.00 g).
4. (a) $(\partial U / \partial V)_{T}=b P^{2}$
(b) $C_{P, \mathrm{~m}}-C_{V, \mathrm{~m}}=(1+b P)^{2} R$
(c) $\mu_{J T}=0$.
5. (a) $q=w=\Delta U=\Delta T=\Delta H=0 ; \Delta V=45.0 \mathrm{~L}$ (gas); $\Delta P=-2.22 \mathrm{~atm} ; \Delta S=9.57 \mathrm{~J} / \mathrm{K}$; $\Delta A=\Delta G=\Delta H-T \Delta S=-2.88 \mathrm{~kJ}$.
6. $q=w=\Delta U=0$ (Joule expansion). We need $\mu_{J} \equiv(\partial T / \partial V)_{U}=-(\partial U / \partial V)_{T} / C_{V}=-b P^{2} / C_{V}$. This gives

$$
C_{V} d T=-b P^{2} d V=-b\left(\frac{R T}{V_{\mathrm{m}}-b R T}\right)^{2} d V \approx-b d V\left(R T / V_{\mathrm{m}}\right)^{2}
$$

where the last step can be taken because $b R T \ll V_{\mathrm{m}}$ at all times in this problem. Separating variables,

$$
\frac{d T}{T^{2}}=-\frac{b n^{2} R^{2}}{C_{V}} \frac{d V}{V^{2}}
$$

Integrating the right-hand side between $V_{1}=5.00 \mathrm{~L}$ and $V_{2}=50.0 \mathrm{~L}$ and the LHS between $T_{1}=301 \mathrm{~K}$ and T_{2} yields $T_{2}=300.56 \mathrm{~K}$. (Since the T change is so small, the LHS integral is, to a very good approximation, also $=\Delta T / T_{1}{ }^{2}$.)
Other results follow: $\Delta V=45.0 \mathrm{~L}$ (gas); $\Delta T=-0.45 \mathrm{~K} ; \Delta P=-2.23 \mathrm{~atm} ; \Delta H=-4.66 \mathrm{~J}$.
7. Find P such that $\Delta G_{\mathrm{rx}}=0$. Use $(\partial G / \partial P)_{T}=V \rightarrow(\partial \Delta G / \partial P)_{T}=\Delta V \rightarrow d(\Delta G)_{T}=\Delta V d P \rightarrow$ $\Delta G_{2}-\Delta G_{1}=\int_{P_{1}}^{P_{2}} \Delta V d P \rightarrow 0-(-801 \mathrm{~J} / \mathrm{mol})=\Delta V_{\mathrm{m}}\left(P_{2}-P_{1}\right)$ $\Rightarrow P_{2}=2.88 \times 10^{3} \mathrm{~atm}$.

