Chemistry 230
 Problem Set \# 6 - 10/1/99

Recommended Problems: $\quad 4.1-11,4.13-16,4.21-30,4.33-47,4.49,4.50$.

1. Problem 3.27 in Levine. Also,
(a) Calculate how many people are needed in a group to ensure a probability of 0.9 that at least one of them has a birthday in September. (Assume months are equally probable for birthdays.)
(b) For the coming election, how many people would have to be polled to give a " 1% reliability" (standard deviation) for the results?
2. (a) The specific heat capacity of ice $\left[\mathrm{H}_{2} \mathrm{O}(s)\right]$ at 1.00 atm is given precisely in the range -40 to $0^{\circ} \mathrm{C}$ by

$$
c_{P}\left(\mathrm{cal} \mathrm{~g}^{-1} \mathrm{~K}^{-1}\right)=0.5053+0.00186 \theta,
$$

where θ is the Celsius temperature. Calculate ΔH and ΔS for heating 20.00 g of ice from $-40.00^{\circ} \mathrm{C}$ to $0.00^{\circ} \mathrm{C}$ at 1.00 atm .
(b) Calculate ΔH and ΔS for heating 20.00 g of $\mathrm{H}_{2} \mathrm{O}(l)$ from $0.00^{\circ} \mathrm{C}$ to $100.00^{\circ} \mathrm{C}$ at $P=1.00 \mathrm{~atm}$. The specific heat capacity of water may be taken as $1.0014 \mathrm{cal} \mathrm{g}^{-1} \mathrm{~K}^{-1}$ over this temperature range.
(c) Calculate ΔH and ΔS for heating 20.00 g of $\mathrm{H}_{2} \mathrm{O}(g)$ from $100.00^{\circ} \mathrm{C}$ to $500.00^{\circ} \mathrm{C}$ at $P=1.00 \mathrm{~atm}$. The specific heat capacity of steam may be taken as $0.4799 \mathrm{cal} \mathrm{g}^{-1} \mathrm{~K}^{-1}$ over this temperature range.
(d) Calculate $\Delta H, \Delta S$, and ΔU for the conversion of 20.00 g of ice at $-40.00^{\circ} \mathrm{C}$ and 1.00 atm to steam at $500.00^{\circ} \mathrm{C}$ and 0.600 atm . Treat $\mathrm{H}_{2} \mathrm{O}(g)$ as an ideal gas for this purpose, and use densities given in PS 4-2 where necessary. The specific heat of fusion for ice at its normal melting point is 79.72 $\mathrm{cal} / \mathrm{g}$, and the specific heat of vaporization at the normal boiling point is $542.3 \mathrm{cal} / \mathrm{g}$.
3. (a) Calculate ΔA and ΔG for the two phase changes (at 1.00 atm) in Problem (2d).
(b) Calculate ΔA and ΔG for the conversion of 20.00 g of ice at 1.00 atm and $-10.0^{\circ} \mathrm{C}$ to supercooled water at the same temperature and pressure. (Use your results from PS 5-2.)
4. A certain gas obeys the equation of state, $P V_{\mathrm{m}}=R T(1+b P)$, where b is a constant. For this gas, obtain expressions for (a) $(\partial U / \partial V)_{T}$, (b) $C_{P, \mathrm{~m}}-C_{V, \mathrm{~m}}$, and (c) $\mu_{J T}$. [All of thse should be reduced to forms containing R, P, and b only.]
5. $\quad 0.500 \mathrm{~mol}$ of a perfect gas is expanded adiabatically into vacuum (Joule experiment), with initial temperature 301 K , initial volume 5.00 L , and final volume 50.0 L . Calculate, if possible, $q, w, \Delta T$, $\Delta V, \Delta P, \Delta U, \Delta H, \Delta S, \Delta A$, and ΔG for this process.
6. Now suppose the gas in the previous problem obeys the equation of state given in Problem 4, with $b=$ $0.0010 \mathrm{~atm}^{-1}$, and $C_{V, \mathrm{~m}}=3 / 2 R$. Repeat the calculation of as many of the following as possible: q, w, $\Delta T, \Delta V, \Delta P, \Delta U, \Delta H$.
7. In the phase transition, CaCO_{3} (aragonite) $\rightarrow \mathrm{CaCO}_{3}$ (calcite), $\Delta G^{\circ}{ }_{\mathrm{m}, 298}=-801 \mathrm{~J} / \mathrm{mol}$ and $\Delta V^{\circ}{ }_{\mathrm{m}, 298}=$ $2.75 \mathrm{~cm}^{3} / \mathrm{mol}$. At what pressure would aragonite become the stable form of CaCO_{3} at 298 K ?

