Chemistry 230 Problem Set # 5 -- Answers

1. (a) This relationship can take a number of forms, one of which is: $\frac{T_2}{T_1} = \frac{P_2}{P_1} \frac{(R/C_{P,m})}{P_1}$.

(b) $(R/C_{P,m}) = \frac{2}{5}$ $T_2 = 90.6$ K. [91 K O.K.] (c) q = 0; $w = U = C_V$ $T = n C_{V,m}$ T = -3.32 kJ; $H = C_P$ $T = U \times \frac{5}{3} = -5.53$ kJ; S = 0.

2. (a)
$$H = C_P(l) \quad T(l) - H_{\text{fus}} + C_P(s) \quad T(s) = 101 \text{ cal} - 797 \text{ cal} - 50 \text{ cal} = -746 \text{ cal}$$

 $U = H - (PV) = H - P \quad V = H - 0.022 \text{ cal} \quad H.$
 $S = (10.1-5.0) \text{ cal/K} \ln(273.15/263.15) - 797 \text{ cal/273.15 K} = -2.73 \text{ cal/K}.$

- 3. (a) H = 0 (U). Thus the supercooled water must warm to the freezing point (0°C) and some must freeze, such that H (l,-10° 0°) + H (l s) = 0.0.
 (b) From the preceding problem, the heat required to warm the supercooled water to 0°C is 101 cal. Thus this heat must come from the freezing process, meaning that the fraction (101/797) of the water will freeze, since 797 cal must be removed from the 10.0 g of liquid water at 0°C to freeze it all. The final state will be 1.27 g ice in equilibrium with 8.73 g water at 0°C.
 (c) S = 10.1 cal/K ln(273.15/263.15) 101 cal/273.15 K = 0.007 cal/K.
 - (d) This process is irreversible, so $S_{univ} > 0$ (S_{syst}).
- 4. (a) $T = 26^{\circ}C = 299.2$ K. (b) U = 0; S = 0.70 cal/K. (c) No. (d) $S_{univ} = S_{syst}$.
- 5. (a) $n_{\text{He}} = 4.32 \text{ mol}; n_{\text{Ar}} = 0.688 \text{ mol}; x_{\text{He}} = 0.863; x_{\text{Ar}} = 0.137.$
 - (b) $V_{\text{He}} = 84.4 \text{ L}; V_{\text{Ar}} = 19.1 \text{ L}; V_f = 132 \text{ L}.$
 - (c) U = H = 0; Since there is no temperature change, $S = n_{\text{He}}R \ln(V_f/V_{\text{He}}) + n_{\text{Ar}}R \ln(V_f/V_{\text{Ar}}) = 27.2 \text{ J/K.}$
- 6. (a) dU = dq + dw $U = C_V$ $T = w = -P_{ex}$ V $C_V (T_2 T_1) = -P_{ex} (V_2 V_1)$ $T_2 = 235$ K. (b) $q = 0; w = U = C_V$ T = -12.6 kJ; $H = C_P$ $T = U \times ^{7}/_{5} = -17.6$ kJ. S = 42.5 J/K (from Eq. 3.29).
 - (c) Since this process is irreversible, $S_{univ} > 0$. It may be as large as S, but could be somewhat less.
- 7. (a) $U = C_V dT = w = -P_{ex} V$ $T_2 = 242.1 \text{ K.}$ (b) q = 0; w = U = -13.12 kJ; H = -17.58 kJ. $S = 43.5_1 \text{ J/K}$ (from Eq. 3.29).