Chemistry 230
 Problem Set \# 5 -- Answers

1. (a) This relationship can take a number of forms, one of which is: $\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\left(R / C_{P, \mathrm{~m}}\right)}$.
(b) $\left(R / C_{P, \mathrm{~m}}\right)=2 / 5 \rightarrow T_{2}=90.6 \mathrm{~K}$. [91 K O.K.]
(c) $q=0 ; w=\Delta U=C_{V} \Delta T=n C_{V, \mathrm{~m}} \Delta T=-3.32 \mathrm{~kJ} ; \Delta H=C_{P} \Delta T=\Delta U \times 5 / 3=-5.53 \mathrm{~kJ} ; \Delta S=0$.
2. (a) $\Delta H=C_{P}(l) \Delta T(l)-\Delta H_{\text {fus }}+C_{P}(s) \Delta T(s)=101 \mathrm{cal}-797 \mathrm{cal}-50 \mathrm{cal}=-746 \mathrm{cal}$. $\Delta U=\Delta H-\Delta(\mathrm{PV})=\Delta H-P \Delta V=\Delta H-0.022 \mathrm{cal} \approx \Delta H$. $\Delta S=(10.1-5.0) \mathrm{cal} / \mathrm{K} \ln (273.15 / 263.15)-797 \mathrm{cal} / 273.15 \mathrm{~K}=-2.73 \mathrm{cal} / \mathrm{K}$.
3. (a) $\Delta H=0(\approx \Delta U)$. Thus the supercooled water must warm to the freezing point $\left(0^{\circ} \mathrm{C}\right)$ and some must freeze, such that $\Delta H\left(l,-10^{\circ} \rightarrow 0^{\circ}\right)+\Delta H(l \rightarrow s)=0.0$.
(b) From the preceding problem, the heat required to warm the supercooled water to $0^{\circ} \mathrm{C}$ is 101 cal . Thus this heat must come from the freezing process, meaning that the fraction (101/797) of the water will freeze, since 797 cal must be removed from the 10.0 g of liquid water at $0^{\circ} \mathrm{C}$ to freeze it all. The final state will be 1.27 g ice in equilibrium with 8.73 g water at $0^{\circ} \mathrm{C}$.
(c) $\Delta S=10.1 \mathrm{cal} / \mathrm{K} \ln (273.15 / 263.15)-101 \mathrm{cal} / 273.15 \mathrm{~K}=0.007 \mathrm{cal} / \mathrm{K}$.
(d) This process is irreversible, so $\Delta S_{\text {univ }}>0\left(\approx \Delta S_{\text {syst }}\right)$.
4. (a) $T=26^{\circ} \mathrm{C}=299.2 \mathrm{~K}$.
(b) $\Delta U \approx \Delta H=0 ; \Delta S=0.70 \mathrm{cal} / \mathrm{K}$.
(c) No.
(d) $\Delta S_{\text {univ }} \approx \Delta S_{\text {syst }}$.
5. (a) $n_{\mathrm{He}}=4.32 \mathrm{~mol} ; n_{\mathrm{Ar}}=0.688 \mathrm{~mol} ; x_{\mathrm{He}}=0.863 ; x_{\mathrm{Ar}}=0.137$.
(b) $V_{\mathrm{He}}=84.4 \mathrm{~L} ; V_{\mathrm{Ar}}=19.1 \mathrm{~L} ; V_{f}=132 \mathrm{~L}$.
(c) $\Delta U=\Delta H=0$; Since there is no temperature change, $\Delta S=n_{\mathrm{He}} R \ln \left(V_{f} / V_{\mathrm{He}}\right)+n_{\mathrm{Ar}} R \ln \left(V_{f} / V_{\mathrm{Ar}}\right)=$ $27.2 \mathrm{~J} / \mathrm{K}$.
6. (a) $d U=d q+d w \rightarrow \Delta U=C_{V} \Delta T=w=-P_{\mathrm{ex}} \Delta V \rightarrow C_{V}\left(T_{2}-T_{1}\right)=-P_{\mathrm{ex}}\left(V_{2}-V_{1}\right) \rightarrow T_{2}=235 \mathrm{~K}$.
(b) $q=0 ; w=\Delta U=C_{V} \Delta T=-12.6 \mathrm{~kJ} ; \Delta H=C_{P} \Delta T=\Delta U \times 7 / 5=-17.6 \mathrm{~kJ}$. $\Delta S=42.5 \mathrm{~J} / \mathrm{K}$ (from Eq. 3.29).
(c) Since this process is irreversible, $\Delta S_{\text {univ }}>0$. It may be as large as ΔS, but could be somewhat less.
7. (a) $\Delta U=\int C_{V} d T=w=-P_{\mathrm{ex}} \Delta V \rightarrow T_{2}=242.1 \mathrm{~K}$.
(b) $q=0 ; w=\Delta U=-13.1_{2} \mathrm{~kJ} ; \Delta H=-17.5_{8} \mathrm{~kJ}$.
$\Delta S=43.5_{1} \mathrm{~J} / \mathrm{K}$ (from Eq. 3.29).
