Chemistry 230 Problem Set 4 -- 1999

- 1. (a) 121 W (b) 245 W (c) T = 33.3 K (d) 4.35 kg[1.2×10^2 2×10^2 33 4.4]
- 2. (a) 0.165 J (0.17) (b) 0.079 J (0.08) (c) 3.10 kJ

All of these work values are MUCH less than the corresponding heats associated with the given processes. Only for (c), where a mole of gas is created, is the work term at all significant.

- 3. (a) 205 kJ (b) 171 kJ
- 4. (a) $C_{V,m} = 21.1 \text{ J mol}^{-1} \text{ K}^{-1} + 0.00840 \text{ T J mol}^{-1} \text{ K}^{-2}$. (b) $P_1V_1 = P_2V_2$, so *T* is constant. Use a Joule expansion.
 - (c) U = H = 0.

5. $C_{V,m} = 64 \text{ J mol}^{-1} \text{ K}^{-1}$; $C_{P,m} = 72 \text{ J mol}^{-1} \text{ K}^{-1}$. (64.0 and 72.3 O.K.)

6. Ar: 3 transl. only $U_{\rm m} = \frac{3}{2}RT$, $C_{V,\rm m} = \frac{3}{2}R$.

CO: (See Prob. 2.45 in Levine) 3 transl., 2 rot., 1 vib. Since CO is a "light" molecule, its vibrational frequency is >> kT at room *T*, meaning $U_{\rm m} = \frac{5}{2}RT$, $C_{V,{\rm m}} = \frac{5}{2}R$ at room *T*. At high *T* (~3000 K), the vibrational contribution becomes significant, increasing $U_{\rm m}$ by *RT* and $C_{V,{\rm m}}$ by *R*.

CO₂: (linear) 3 transl., 2 rot., 4 vib. Again, CO₂ is "light," so the contributions from vibration are not significant at room *T*. The contributions from translation and rotation are the same as for CO. The vibrational contributions to $U_{\rm m}$ and $C_{V,{\rm m}}$ range from 0 4RT and 0 4R, respectively.

H₂O: (nonlinear) 3 transl., 3 rot., 3 vib. Here again, H₂O is "light," so vibration is inactive at room *T*. The contributions from translation and rotation yield $U_{\rm m} = 3RT$, $C_{V,{\rm m}} = 3R$. The vibrational contributions to $U_{\rm m}$ and $C_{V,{\rm m}}$ range from 0 3*RT* and 0 3*R*, respectively.

CCl₄: (nonlinear) 3 transl., 3 rot., 9 vib. The contributions from translation and rotation are the same as for H₂O. The contributions from vibration to $U_{\rm m}$ and $C_{V,\rm m}$ range from 0 9*RT* and 0 9*R*, respectively. In this case there will be some significant contribution from vibration already at room *T*, but this cannot be easily estimated.