Chemistry 230 Problem Set # 12 — 11/19/99

<u>Recommended Problems</u>: Chapt. 9: 37, 43-45, 48 Chapt. 10: 1-4, 52, 53, 56

- Chapt. 11: 30, 40, 41 (a,b,d,e,f)
- 1. A vapor pressure of 177.95 torr is measured for a solution of ethanol (eth) and chloroform (chl) at 45° C having $x_{eth} = 0.9900$. The vapor pressure of pure ethanol at this temperature is 172.76 torr. [Hint: See problem 9.41 in Levine.]
 - (a) Treating the solution as ideally dilute, determine the partial pressures and gas phase mole fractions of both components in the vapor phase.
 - (b) Obtain the Henry's law constant for chloroform in ethanol at 45° C.
 - (c) Calculate $\mu^{\circ}_{chl, l} \mu^{\circ}_{chl}$, for chloroform in ethanol at 45°C.
 - (d) The vapor pressure is 183.38 torr when x_{eth} is decreased to 0.9800, and the mole fraction of ethanol in the vapor phase is 0.9242. Calculate the Convention II activity coefficients for both components in this solution. (Is there a problem with these results?)
- 2. A *simple* binary solution is one for which

 $G_{\text{mix}} = RT (n_{\text{A}} \ln x_{\text{A}} + n_{\text{B}} \ln x_{\text{B}}) + (n_{\text{A}} + n_{\text{B}}) x_{\text{A}} x_{\text{B}} W(T, P)$

at constant *T* and *P*, where W(T,P) is a function of *T* and *P*. Theory shows that when the A and B molecules are approximately spherical and have similar sizes, the solution should be approximately simple. For a simple solution,

- (a) Find expressions for H_{mix} , S_{mix} , and V_{mix} .
- (b) Show that $\mu_A = \mu_A^* + RT \ln x_A + W x_B^2$, with a similar equation for μ_B .
- (c) Obtain expressions for the vapor partial pressures P_A and P_B , assuming ideal vapor.
- 3. The following data are available for solutions of acetone (ace) and chloroform (chl) at 50.0°C:

x _{ace.l}	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.000
$x_{\rm ace.}$	0.00	0.071	0.165	0.279	0.408	0.550	0.684	0.789	0.890	0.955	1.000
$P_{\rm tot}({\rm torr})$	521	495	474	463	460	469	489	511	540	576	612

- (a) For the case $x_{ace,l} = 0.70$, calculate (i) $\mu_i \mu_i^*$ for each component; (ii) G_{mix} for preparing 2.34 mol of this solution; and (iii) G_{mix} for 2.34 mol of the corresponding ideal solution.
- (b) Calculate and plot I for both components, over the full range of composition.
- (c) Calculate II for both components, taking acetone as the solvent. [Hint: See problem 10.8 in Levine.]
- 4. Use your data and results just above for acetone/chloroform solutions at 50°C to calculate $G^{E/n}$ as a function of composition. Compare your results with Fig. 10.3b for 35.2°C. [Hint: See Problem 10.7 in Levine.]