Chemistry 230 Problem Set # 11 — 11/10/99

<u>Recommended Problems</u>: Chapt. 9: 1-5, 8-12, 14-16, 19, 20, 29, 35, 39, 53, 63-65

- 1. 4.45 g of 100% sulfuric acid is added to 82.20 g of water, and the density of the solution is found to be 1.029 g/cm³ at 25°C and 1 atm. Treating the acid as solute, calculate (a) the weight per cent; (b) the mole fraction; (c) the mole per cent; (d) the molality; and (e) the molarity of the solution.
- 2. The partial molar volume V_B of K₂SO₄ in aqueous solutions at 25°C is given by

 $V_B (\text{cm}^3/\text{mol}) = 32.280 + 18.216 \ m^{1/2} + 0.0222 \ m,$

where *m* is the molality of the solution. For water at this temperature, $V_{\rm m} = 18.068 \text{ cm}^3/\text{mol}$.

- (a) Obtain an equation for the total volume V of a solution containing $1.000 \text{ kg of H}_2\text{O}$.
- (b) Obtain an equation fot the partial molar volume V_A of water. [Hint: See Problem 9.22 in Levine.]
- 3. The molar enthalpy of mixing for forming solid solutions of NaCl and NaBr at 25° C as a function of the mole fraction *x* of NaBr is given by

 $H_{\text{mix,m}}(\text{kJ/mol}) = 5.996 \ x - 6.761 \ x^2 + 0.765 \ x^3$.

- (a) Calculate *H* for mixing 1.000 mol of each component to form 2.000 mol of solution.
- (b) Calculate the differential heats of solution for each component in the 50.0 mole per cent solution.
- 4. Benzene and hexane form nearly ideal solutions. At 300.0 K the vapor pressure of pure benzene is 0.1355 atm and that of pure hexane is 0.2128 atm. 50.00 g of benzene is mixed with 50.00 g of hexane at 300.0 K to form 100.00 g of solution.
 - (a) Calculate the mole fraction of benzene in the solution and the vapor pressures of both components.
 - (b) Calculate the total vapor pressure of the solution and the mole fraction of benzene in the vapor present in equilibrium with the solution.
 - (c) The densities of benzene and hexane are 0.8787 and 0.6603 g/cm³, respectively. Calculate the volume of the solution.
 - (d) Calculate G_{mix} , S_{mix} , and H_{mix} for this solution.
- 5. Pure liquids A and B form ideal solutions at T = 300.0 K & P = 1.00 atm. Calculate the minimum work needed to remove 1.00 mole of A from (a) a mixture of 2.00 mol A and 2.00 mol B; (b) a mixture of 10.00 mol A and 10.00 mol B; (c) a mixture of 10000.0 mol A and 10000.0 mol B.
- 6. Two 10.0-L bulbs are connected by a stopcock. One bulb contains 100.0 g of water, and the other contains a gas at 2.00 atm pressure. Both bulbs are at 25°C. The solubility of the gas in water at this *T* and P = 1.00 atm is 2.00 mol/kg. The vapor pressure of water is 23.76 torr. Calculate the total pressure in the system if the stopcock is opened and equilibrium is established at 25°C. (Assume the gas neither dissociates nor associates in solution, and treat it as ideal in the gas phase.)
- 7. The CRC Handbook lists the following "relative apparent molal enthalpies" (L) for aqueous solutions of HBr at 25°C: (These are relative to infinite dilution; H = -20.35 kcal/mol.)

<i>m</i> (mol/kg)	1.000	6.000	15.000	20.000	27.753	37.004	55.506
L (cal/mol)	314	1196	3415	4760	6650	8530	11670

- (a) Calculate the mole fractions of HBr corresponding to each of these molalities.
- (b) Calculate integral heats of solution for HBr in water for each of these concentrations.
- (c) Further, convert these integral heats to H_{mix} values. Then plot H_{mix}/n as a function of x_{HBr} , and use the method of intercepts to estimate H_{diff} for both components at $x_{\text{HBr}} = 0.25$. [Hint: See problem 9.27 in Levine.]